
Addressing the straggler problem
for iterative convergent parallel ML

Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R. Ganger, Phillip B. Gibbons,
Garth A. Gibson, Eric P. Xing Carnegie Mellon University

Abstract
FlexRR provides a scalable, efficient solution to the straggler
problem for iterative machine learning (ML). The frequent
(e.g., per iteration) barriers used in traditional BSP-based dis-
tributed ML implementations cause every transient slowdown
of any worker thread to delay all others. FlexRR combines
a more flexible synchronization model with dynamic peer-
to-peer re-assignment of work among workers to address
straggler threads. Experiments with real straggler behavior
observed on Amazon EC2 and Microsoft Azure, as well as in-
jected straggler behavior stress tests, confirm the significance
of the problem and the effectiveness of FlexRR’s solution.
Using FlexRR, we consistently observe near-ideal run-times
(relative to no performance jitter) across all real and injected
straggler behaviors tested.

1. Introduction
Statistical machine learning (ML) is emerging as a powerful
building block for modern services, scientific endeavors, and
enterprise processes. ML algorithms determine parameter
values that make an assumed mathematical model fit a set
of input (observation) training data, as closely as possible,
such that the model can then be used on other data points.
Increasingly, distributed implementations of ML algorithms
are used, even when the model fits in a single machine’s
RAM, because the precision and complexity of many models
create large computation time requirements for determining
parameter values.

ML algorithms vary, and this paper focuses on a major
subset: iterative convergent algorithms solved in an input-
data-parallel manner. Such algorithms begin with a guess of
the solution and proceed through multiple iterations over the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987554

c4.xlarge Instances c4.2xlarge Instances0

5

10

15

20

25

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 1: Comparison of MF performance on EC2. The graph shows
average time-per-iteration for a collaborative filtering application
(MF) running on 64 EC2 instances. For each of two EC2 machine
classes, four approaches are compared: “BSP” and “FlexRR” rep-
resent the traditional approach and our solution, which combines
flexible consistency bounds with our temporary work re-assignment
technique. The “SSP” and “BSP RR” bars show use of individual
ones of these two primary techniques, demonstrating that neither
alone addresses the straggler problem for iterative convergent ML.
FlexRR outperforms BSP and SSP by 53% and 39% (left) and 35%
and 25% (right), for these two EC2 machine classes. Experimental
details are in Section 5.

input data to improve the solution. Most distributed imple-
mentations of such algorithms follow the Bulk Synchronous
Parallel (BSP) computational model. Input data is divided
among worker threads, each of which iterates over its subset
of the input data and determines solution adjustments based
on its local view of the latest parameter values. All workers ex-
ecute the same iteration at the same time, enforced by barriers,
and solution adjustments from one iteration are exchanged
among workers before the next iteration begins. When many
workers are involved, regular barrier synchronization often
induces large slowdowns, due to straggler problems.

A straggler problem arises whenever worker threads ex-
perience uncorrelated performance jitter. In each iteration,
under BSP, all workers must wait for the slowest worker
in that iteration, so one slowed worker causes unproductive
wait time for all the others. Unfortunately, even when load is
balanced, transient slowdowns are common in real systems
(especially in shared clouds) and have many causes, such
as resource contention, garbage collection, background OS
activities, and (for ML) stopping criteria calculations. Worse,
the frequency of such issues rises significantly when exe-
cuting on multi-tenant computing infrastructures rather than

dedicated clusters (as is becoming increasingly common) and
as the number of workers and machines increases.

Straggler mitigation techniques based on redundant task
execution [5, 6, 19, 52] have been applied successfully to
data processing jobs that fit map-reduce-style BSP execution
(e.g., in Hadoop [7] or Spark [51]), relying on the idempo-
tency of redundantly executed tasks. But, the most efficient
frameworks for distributed ML do not work that way. In-
stead, these frameworks share state and exploit ML-specific
properties to reduce coordination overheads and converge
far faster [1, 3, 11, 12, 15, 35, 38]. Because the changes to
shared state are not idempotent, new approaches to straggler
mitigation are needed.

This paper describes FlexRR, a new approach to straggler
mitigation without the correctness problems of redundant
task execution, for iterative convergent ML on efficient ML
frameworks. FlexRR combines flexible consistency bounds
with a new temporary work reassignment mechanism we call
RapidReassignment. Flexible consistency bounds via SSP1

remove the barriers of BSP, allowing fast workers to proceed
ahead of slowed workers by a bounded amount [13, 31, 35].
The flexibility improves efficiency, while the bound enables
convergence to be proven [31, 36]. With RapidReassignment,
a slowed worker can offload a portion of its work for an
iteration to workers that are currently faster, helping the
slowed worker catch up. The two techniques complement
each other, and both are necessary to address the straggler
problem for iterative convergent ML. Flexible consistency
bounds provide FlexRR with enough slack to detect slowed
workers and address them with RapidReassignment, before
any worker reaches the bound and is blocked.

FlexRR’s RapidReassignment is a specialized form of
work shedding optimized for large-scale data-parallel itera-
tive ML: (1) It takes advantage of the well-defined notion
of progress through an iteration to identify slowed work-
ers quickly. (2) It uses P2P communication among workers
to detect slowed workers and perform work re-assignment,
bounding communication overhead and avoiding a central
decision-making bottleneck. (3) It uses explicit helper groups,
limiting to which other workers any given work can be of-
floaded, to minimize data movement and enable input data
preloading. (4) Optionally, it exploits iteration knowledge
to further reduce how much data needs to be preloaded on
helpers. Overall, RapidReassignment’s design enables effi-
cient and scalable temporary work reassignment for state-of-
the-art efficient ML frameworks.

Extensive experiments demonstrate that FlexRR success-
fully addresses the straggler problem for three real ML ap-
plications and various real and injected straggler behaviors.
As illustrated in Figure 1, FlexRR reduces time-per-iteration
by 35–53% on average, compared to the traditional BSP ap-
proach, and by 25–39% over SSP, even for relatively small

1 We refer to Stale Synchronous Parallel (SSP) in the paper, but the concept
has also been described as Bounded Delay consistency [35].

ML problems on relatively expensive Amazon EC2 instances
(which would be expected to have minimal resource sharing
with other tenant activities). Similar results are observed in
experiments on Microsoft Azure. In addition, various syn-
thetic stragglers behaviors drawn from prior studies are used
for controlled study of a wider range of scenarios; FlexRR
consistently nearly matches an “ideal” lower bound in which
all work is at all times perfectly balanced at no overhead,
resulting in up to 5–10× improvement over BSP and SSP in
extreme cases.

This paper makes three primary contributions: (1) It de-
scribes the first runtime solution, to our knowledge, to the
straggler problem for iterative ML on efficient frameworks.
Previous work on stragglers focuses on impractical solutions
(e.g., preventing them entirely) or different parallel computa-
tions (e.g., sets of idempotent tasks with no iteration or shared
state). (2) It describes FlexRR, including its novel RapidReas-
signment design that specializes work shedding for parameter
server systems to avoid significant inefficiencies that would
arise with traditional realizations. (3) It demonstrates the effi-
cacy of FlexRR, and its advantages over existing approaches,
with three real ML applications. We measure real straggler ef-
fects and show FlexRR effectively mitigates them on each of
Amazon EC2, Microsoft Azure, and a large dedicated cluster,
as well as under various injected straggler patterns. Overall,
FlexRR provides a simple, practical, and effective solution to
an important and long-unsolved problem in parallel ML.

2. Background and Related Work
This section presents background on iterative convergent ML
algorithms and prior work addressing stragglers.

2.1 Iterative ML, BSP, and Stragglers

Iterative convergent algorithms. Many ML tasks (e.g.,
sparse matrix factorization, multinomial logistic regression,
DNN, K-means, Sparse Coding and latent Dirichlet alloca-
tion) are solved by searching a space of potential solutions for
one with a large (or, for minimization, small) objective value,
using an iterative convergent algorithm. Such algorithms start
with an initial solution (model parameter values) and proceed
through a sequence of iterations, each seeking to produce a
new solution with an improved objective value. Typically,
each iteration considers each input datum individually and
adjusts current model parameters to more accurately reflect it.
Eventually, the algorithm reaches a stopping criterion, such as
surpassing a target objective value or leveling off of objective
value improvements, and outputs a solution. A key property
of these algorithms is that they converge to a good solution
even if there are minor inconsistencies in parameter updates.
This makes them amenable to efficient distributed execution
using flexible consistency bounds, with up to 99× speedups
reported over fast single-thread implementations [15].

BSP. Most distributed implementations of iterative conver-
gent algorithms follow the Bulk Synchronous Parallel (BSP)
computational model with an input-data-parallel approach.

The input data is divided among worker threads that execute
in parallel, performing the work associated with their input
data, and executing barrier synchronizations at the end of
each iteration. For an ML algorithm, the model parameters
are stored in a shared data structure (often distributed among
the workers) that all workers update during each iteration.
BSP guarantees that all workers see all updates from the pre-
vious iteration, but not that they will see updates from the
current iteration, enabling workers to use cached copies of
model parameters for efficiency. Typically, the assignment of
work to workers stays the same from one iteration to the next,
to avoid the overheads of input data movement.

Stragglers: A primary performance issue for BSP is
stragglers, because in each iteration, all workers must wait
for the slowest worker in that iteration. The straggler problem
grows with the level of parallelism, as random variations
in execution times increase the probability that at least one
worker will run unusually slowly in a given iteration. Even
when it is a different straggler in each iteration, due to
uncorrelated transient effects, the entire application can be
slowed significantly.

Stragglers can occur for a number of reasons [5, 6], includ-
ing hardware heterogeneity [32, 45, 49], hardware failures [6],
unbalanced data distribution among tasks, garbage collection
in high-level languages, and various OS effects [8, 42]. Re-
source contention is another common cause, especially in
shared cloud infrastructures. Additionally, for ML algorithms,
expensive stopping criteria computations can lead to straggler
effects, when performed on a different worker machine every
so many iterations.

2.2 Related Work Addressing Stragglers

Stragglers have long plagued parallel computing, and many
techniques have been developed to mitigate them.

Eliminating performance variation. The HPC community—
which frequently runs applications using the BSP model—
puts significant effort into identifying and removing sources
of performance jitter from the hardware and OSs of their
supercomputers [23, 42]. Naiad [40] used the same approach.
While this approach can be effective at reducing performance
“jitter” in specialized and dedicated machines, it does not
solve the more general straggler problem. For instance, it
is not applicable to programs written in garbage-collected
languages, does not handle algorithms that inherently cause
stragglers during some iterations, and does not work for
today’s multi-tenant computing infrastructures [17, 22, 30].

Blacklisting is a limited form of performance variation
elimination, which attempts to mitigate stragglers by ceasing
to assign work to workers that are falling behind. However,
this approach is fragile. Stragglers caused by temporary slow-
downs (e.g., due to resource contention with a background
activity) often occur on non-blacklisted machines [18]. Worse,
good workers that have such a temporary slowdown may then
be blacklisted, unnecessarily reducing the computing power
available.

Speculative execution and task cloning. Speculative
execution is used to mitigate stragglers in data processing
systems like MapReduce, Hadoop, and Spark [5–7, 19, 52].
Jobs in these systems consist of stateless, idempotent tasks
like “map” and “reduce”, and speculative execution runs slow
tasks redundantly on multiple machines. While this consumes
extra resources, it can significantly reduce job completion
delays caused by stragglers, because the output from the first
instance of any given task can be used without waiting for
slower ones.

State-of-the-art frameworks for high-performance paral-
lel ML use a parameter server architecture [1, 3, 11, 12,
15, 16, 29, 35], which does not accommodate computation
redundancy. While iterative ML can be built as a series of
collections of idempotent tasks, doing so precludes many
effective techniques for reducing overhead and speeding con-
vergence [14, 15, 35]. For example, the highly-tuned Spark-
based GraphX [27] was shown to approximately match Pow-
erGraph [26], which has been shown [15] to be 2–10X slower
than two recent parameter server systems (IterStore [15] and
LazyTable [14]) for collaborative filtering via sparse matrix
factorization. In parameter server systems, worker process-
ing involves shared state and is not idempotent. Applying the
same adjustments more than once can affect convergence neg-
atively or even break algorithm invariants. FlexRR uses peer-
to-peer interactions among workers to offload work when
necessary, avoiding the wasted resources and potentially in-
correct behavior of redundant work.

Work stealing, work shedding. Work stealing and work
shedding are mirror approaches for adaptively rebalancing
work queues among workers [2, 10, 20, 21]. The concept
is to move work from a busy worker to an idle worker.
FlexRR’s temporary work reassignment mechanism is a
form of work shedding, specialized to the nature of data-
parallel iterative ML. There are several key differences.
First, FlexRR takes advantage of the well-defined notion
of progress through an iteration to identify slowed workers
early on and avoid delays; work stealing, in contrast, waits
for a worker to idle before looking to steal work, incurring
additional delays until work is found. Second, while work
stealing is computation-centric (e.g., data is moved to the
thread that steals the work), FlexRR carefully avoids data
movement by limiting and pre-determining reassignment
patterns to avoid expensive on-demand loading of input data
and parameter state. Third, because of its focus on transient
stragglers, FlexRR’s reassignments are temporary—only for
the remainder of an iteration. Finally, it is designed explicitly
to work in conjunction with flexible consistency bounds, as
discussed below.

Using less strict progress synchronization. The strict
barriers of BSP can be replaced with looser coordination
models. One approach is to reduce the need for synchro-
nization by restricting communication patterns. For exam-
ple, GraphLab [38, 39] programs structure computation as

a graph, where data can exist on nodes and edges. All com-
munication occurs along the edges of this graph, so non-
neighboring nodes need not synchronize. However, GraphLab
requires the application programmer to know and specify the
communication pattern.

Albrecht et al. [4] describe partial barriers, which allow
a fraction of nodes to pass through a barrier by adapting the
rate of entry and release from the barrier.

Yahoo! LDA [3] and Project Adam [12], as well as most
solutions based around NoSQL databases, allow workers
to run asynchronously, relying on a best-effort model for
updating shared data. While such approaches can work well
in some cases, they provide no guarantees of convergence for
ML algorithms and indeed can readily diverge.

FlexRR uses flexible consistency bounds, which has been
recently proposed and studied under two different names:
“Stale Synchronous Parallel” (SSP) [13, 31] and “Bounded
Delay consistency” [35]. These schemes generalize BSP
by allowing any worker to be up to a bounded number of
iterations ahead of the slowest worker. So, for BSP, the bound
(which we will refer to as the slack-bound) would be zero.
With a slack-bound of b, a worker at iteration t is guaranteed
to see all updates from iterations 1 to t− b− 1, and it may
see (not guaranteed) the updates from iterations t − b to t.
Such a bound admits proofs of convergence [31, 35, 36].
Consistent with our results, SSP has been shown to mitigate
small transient straggler effects [14, 35] but not larger effects.
FlexRR combines SSP with temporary work reassignment to
address the straggler problem for iterative ML.

3. FlexRR Design & Implementation
FlexRR provides parallel execution control and shared state
management for input-data-parallel iterative convergent ML
algorithms. This section overviews FlexRR’s API, basic
execution architecture, shared state management approach,
and solution to the straggler problem.

FlexRR’s design relies on a few assumptions about ap-
plication behavior. It assumes data-parallel processing, with
worker threads processing assigned input data items indepen-
dently and without order-dependence. It assumes iterations
(or mini-batches, when used) are not too short to detect and
react to slowed workers and that a worker’s progress through
an iteration can be measured, such as by the fraction of its
input data items processed, and that the overall training time
is greater than the loading time. Also, RapidReassignment’s
performance relies on being able to reassign work quickly;
so, it assumes that there is either no cross-iteration data-item-
specific local state or that there is a way to avoid needing to
transfer it with reassigned work.2 These characteristics are
common to most data-parallel iterative ML applications, in-

2 An example of the latter is our LDA application, which originally relied
on local state. Instead of transferring local state between workers, which we
found to be too inefficient, we designed an LDA-specific mechanism to avoid
dependence on the local state.

W
W

W
Worker

Data
D

D
D

Parameter Server

Figure 2: FlexRR architecture. This high-level picture illustrates
FlexRR’s logical structure, for the case of one core (so, one worker
thread) per node. The worker is assigned some input data to process
in each iteration, making adjustments to the model parameters stored
in a parameter server, which is itself sharded among the same nodes
as the worker threads.

cluding our benchmark apps as well as deep neural networks,
K-means clustering, Sparse Coding and many others.

FlexRR (Figure 2) is implemented as a C++ library linked
by an ML application using it. During execution, FlexRR
consists of one process executing on each node being used.
Each FlexRR process starts a worker thread for each core on
the node and a number of background threads for its internal
functionality. The worker threads execute the ML application
code for adjusting model parameters based on input data and
possibly local state. The shared model parameters, which
may be read and adjusted by all worker threads, are stored
in a so-called “parameter server” maintained by the set of
FlexRR processes.

3.1 Workers and Execution Management

During initialization, an ML application provides FlexRR
with the list of nodes/cores to be used, the input data file
path, several functions called by FlexRR, and a stopping cri-
terion. The input file contains data items in an understood
format (e.g., rows that each contain one input data item in
an easy-to-process format). The stopping criterion may be
a number of iterations, an amount of time, or a determina-
tion of convergence. The most important function provided
(process-input) is for processing a single input data
item, taking the data item value as input and processing it to
determine and apply model parameter adjustments as needed.

Each worker thread is assigned a unique ID, from zero
to N− 1, and a disjoint subset of the input data items. The
default assignment is a contiguous range of the input data,
determined based on the worker ID, number of workers, and
number of data items. Each worker has an outer loop for
iterating until the stopping criterion is reached and an inner
loop for each iteration3 that calls process-input on each
of its data items.

3 We have simplified the description a bit. For greater flexibility, FlexRR
actually provides a notion of a clock of work that gets executed on each inner
loop, which may range from some number of data items (a “mini-batch” of
an iteration) to some number of complete iterations.

3.2 Parameter Server for Shared State

FlexRR uses the increasingly popular parameter server ap-
proach [3, 31, 35, 43] to storing and managing the shared
state (i.e., the model parameters being computed) among
worker threads. A parameter server provides a simple read-
update interface to the shared state, greatly simplifying the
application ML code by efficiently and scalably handling
communication and consistency.

The FlexRR parameter server is derived from LazyTable [14,
15]. It exposes a simple key-value interface to the ML applica-
tion code, which uses read-param and update-param
functions to read or update (apply a delta to) a model param-
eter value specified by the key. The value type is application-
defined, but must be serializable and have a commutative
and associative aggregation function, such as plus, union,
or multiply. With this property different worker threads can
apply changes in any order without affecting the result. For
the ML applications used in this paper, the values are vectors
and the aggregation function is addition.

The parameter server implementation reduces cross-node
traffic by including a client-side cache for model parameter
entries. While logically separate, the parameter server is
part of the same FlexRR processes as the worker threads.
Every process has a number of parameter server threads
and maintains a shard of the shared state. Each iteration
updates are write-back cached, and asynchronously sent to
the appropriate parameter server shards.

FlexRR supports both the BSP and SSP models discussed
in Section 2. Each cached value is associated with an itera-
tion number that indicates the latest iteration for which all
workers’ updates have been applied to it. During a read, the
cached value is returned only if it reflects all updates up to
the slack-bound (zero, for BSP); that is, the value is up-to-
date enough if it reflects all updates from iterations more
than “slack-bound” before the worker’s current local iteration
number. Otherwise, the read must proceed to the appropriate
server shard to retrieve the value, possibly waiting there for
other workers’ updates. For fault tolerance, FlexRR supports
the same checkpointing mechanism as LazyTable [14]–its
RapidReassignment mechanism does not affect it.

3.3 Straggler Mitigation

FlexRR combines two mechanisms, flexible consistency
bounds via the SSP model and temporary work reassign-
ments via our RapidReassignment, to address the straggler
problem for iterative ML. The SSP model allows each worker
thread to be ahead of the slowest worker by up to a speci-
fied slack-bound number of iterations. This flexibility miti-
gates stragglers to some extent [14] (see also the SSP bars
in Figure 1 and Section 5), but more importantly provides
enough flexibility for RapidReassignment to be highly effec-
tive. RapidReassignment uses peer-to-peer communication to
enable workers to self-identify as stragglers and temporarily
offload work to workers that are ahead. While FlexRR’s sup-

port for SSP is similar to recent systems [14, 35], its scalable,
data-centric work reassignment mechanism is new.

4. RapidReassignment Design
The goal of RapidReassignment is to detect and temporarily
shift work from stragglers before they fall too far behind,
so that workers never have to wait for one another. Workers
exchange progress reports, in a peer-to-peer fashion, allowing
workers to compare their progress to that of others. If a
worker finds that it is falling behind, it can send a portion of
its work to its potential helpers (a subset of other workers),
which can confirm that they are indeed progressing faster
and provide assistance (see Figure 3). Combined with SSP,
RapidReassignment is highly effective in mitigating straggler
delays of all intensities.

4.1 Worker Groups

RapidReassignment is designed for scalability, using peer-to-
peer coordination among workers instead of a central arbiter.
Like overlay networks [46, 48], workers exchange progress
reports and offloaded work with only a few other workers,
avoiding the scalability problems that would arise from all-to-
all progress tracking or a centralized work reassignment ap-
proach, especially for short iterations when progress tracking
and reassignment are more frequent.4 During initialization,
each worker is assigned a group of workers that are eligible
to provide assistance, referred to as its helper group, and a
group of workers to whom the worker is eligible to provide
assistance, referred to as its helpee group. The size of each
group is set at start up and can be configured by the ML
application. Each worker is assigned one helper on the same
machine, and its other helpers are spread across different
machines. While helper and helpee groups may overlap, they
are usually not identical. For example, in a system containing
64 workers assigned round-robin to 8 machines and 4 helpers
assigned to every worker, worker 14 might be eligible to as-
sist workers (8,9,15,22) while workers (6,11,12,13) would be
designated as its helpers. A waterfall effect results, whereby
a worker providing a lot of assistance to some workers can in
turn offload its own work to others, and so on, such that all
workers make similar progress.

Worker groups also improve work reassignment efficiency.
A helper needs to access the input data associated with the
reassigned work. While it could fetch that data on demand,
the helper’s help is much more efficient if the data is fetched
in advance. Indeed, based on our experiments, work reas-
signment is too slow to be helpful without doing so. Toward
that end, each worker under RapidReassignment prefetches
a copy of the input data of its helpee group members after

4 For small scale systems and longer iterations, our design could be readily
adapted to use a central master to handle inter-worker coordination and
reassignment. However, this approach would not outperform our P2P design
in general. Moreover, the computation and communication of the master
would compete with doing real work on that server, adding an additional
straggler effect.

SlowFastOk

I’m this far I’m this farIgnore!
(I don’t need help)

Do assignment #2!
 (green work)

Started Working

Do assignment #1!
(red work)

I’m behind!
(I need help)

Figure 3: RapidReassignment example. The middle worker sends
progress reports to the other two workers (its helpee group). The
worker on the left is running at a similar speed, so it ignores the
message. The worker on the right is running slower, so it sends a
do-this message to re-assign an initial work assignment. Once
the faster worker finishes its own work and begins helping, it sends
a begun-helping message to the slow worker. Upon receiving
this, the slow worker sends a do-this with a follow-up work
assignment to the fast worker.

loading its own data. The limited set of helpees bounds the
cache space needed, which can be further reduced by caching
only the tail of each helpee’s iteration. Our experiments show
that FlexRR suffers minimal performance loss from workers
caching only the tail fraction of their helpees’ input data (see
Section 5.6).

4.2 Worker Communication

RapidReassignment uses non-blocking Message Passing In-
terface (MPI) for communication among workers. Workers
explicitly poll for messages during each iteration, in order
to compare their respective progress. The message check
frequency parameter specifies how many times during each
iteration a worker checks for incoming messages. The de-
fault setting is 100 checks per iteration, which our sensitivity
experiments (Section 5.7) show is a good value.

To determine speed differences between workers, each
worker keeps a runtime timer to track how long it has been
running. These timers are launched during initialization, fol-
lowing a joint barrier. Because RapidReassignment addresses
relatively large differences in progress (e.g., 20% of a multi-
second iteration), with smaller differences mitigated by flex-
ible consistency bounds, these timers are sufficiently pre-
cise and need to be resynchronized only infrequently (e.g.,
hourly).

4.3 RapidReassignment Actions

This section describes the five primary RapidReassignment
actions in FlexRR, designed to quickly offload work from
slow workers to faster helpers (Figure 3). As will be seen,
RapidReassignment is carefully tuned to the properties of
data-parallel iterative convergent algorithms, such as the
freedom to delay and reorder updates on the one hand, yet

the need to avoid duplicating work on the other (recall that
duplicating work can lead to incorrect behavior).

Identifying Stragglers. Upon reaching the progress
checkpoint in the current iteration, which by default is set to
75% completion, a worker sends out a progress-report
message to its helpee group, containing its current iteration
number and the local time in its runtime timer. During each
message check, a worker checks for progress-report
messages from its helpers. Upon receiving such a message,
the worker calculates its progress compared to the progress
of the eligible helper. The logic for calculating the progress
difference is shown in Algorithm 1. The result informs the
worker how far ahead or behind (as a percentage of the
iteration) it is relative to the progress-report sender.

Algorithm 1 Progress Difference Calculation
1: completion diff ← progress in the message minus progress of

the current worker
2: current avg←weighted average time it takes the current worker

to complete an iteration
3: time diff ← timer value of the current worker minus timer value

contained in progress message
4: progress difference← completion diff + time diff

current avg

Reassigning Work. If a worker finds that it has fallen be-
hind the sender of a progress-report by more than a
set threshold (the straggler trigger threshold, with a default of
20%), it will send an initial work assignment in a do-this
message back to the sender. This initial work assignment is a
percentage of its work for the current iteration. Section 5.7
shows that a default of 2.5% is a good setting for this tunable.
The do-this message contains the current iteration number
of the slow worker, beginning and end of the work assign-
ment (a range of the input data), and a local timestamp of the
message. A sample message is do-this (iteration: 4,

start: 140, end: 160, timer: 134.43). Note that,
as shown in Figure 3, the slow worker reassigns ranges of
work starting from the end of its current iteration. Assign-
ing from the end is the least disruptive to the slow worker’s
progression through its input data items, and takes advantage
of the robustness of iterative convergent algorithms to pro-
cessing data items in any order despite the data dependencies
(such dependencies between item processing—resulting from
their update-param calls—would make this reordering
unsafe for general code).

Helping with Work. Workers check for do-this mes-
sages on every message check. Upon receiving a do-this
message, the worker (the potential helper, in this case) will
compare the timestamp of the message to the timestamp of the
latest cancel-help message (see below) from the same
worker. If the timestamp in the do-this message is greater,
the potential helper will compare its current iteration to the
iteration number contained in the do-this message. If the
iteration number contained in the message is smaller than
the helper’s current iteration, the helper will immediately

Algorithm 2 Helping Decision
1: msg← check for helping requests
2: if msg.timestamp ≤ last cancellation timestamp OR

msg.iteration > current iteration then
3: Discard msg
4: else if msg.iteration < current iteration OR finished its own

work this iteration then
5: Send begun-helping and do the help
6: else
7: Save msg for the end of this iteration
8: end if

send a begun-helping message and begin working on
the work assignment. Upon completing the work assignment,
the worker will send a help-completed message to the
original worker and check for additional do-this messages
prior to returning to its own work.

If the iteration number in the do-this message equals
the helper’s current iteration (as in assignment #1 in Figure 3),
then the helper will put aside the work assignment until the
end of the current iteration. If at the end of the iteration the
worker has yet to receive a cancel-help message contain-
ing a timestamp greater than the timestamp of the do-this
message, the helper will send out a begun-helping mes-
sage and begin working on the work assignment. Upon
completing the work assignment, the helper will send a
help-completed message to the original worker (the
helpee) and, after checking for additional valid do-this
messages, will move on to its own next iteration. Algorithm 2
shows the pseudo-code for the worker’s decision about if and
when to provide assistance.

Assigning Additional Work. After much experimenta-
tion, we have found that a good strategy for balancing various
concerns is to first assign a relatively small amount of initial
work, immediately followed by a larger amount (double) of
additional work once a helper begins processing the initial
assignment. To that end, after a worker sends out a do-this
message, it will check for begun-helping messages dur-
ing every message check in that iteration. If such a message
is received, and more help is needed, the worker will send
an additional do-this message to the faster worker, con-
taining a follow-up work assignment of twice the size (see
Figure 3). For the rest of the iteration, the worker will send
another follow-up work assignment each time it receives a
begun-helping message.

Cancelling Work Reassignments. After reassigning a
portion of its work, a worker will continue working on its
current iteration until it completes all the work it has not
given away. At this point, for all pending do-this mes-
sages the worker has sent out, the worker will check for
begun-helping messages. If there is a work assignment
for which a begun-helping message has yet to be re-
ceived, the worker will send out a cancel-help message
containing the current timestamp and complete the work on

its own. Upon completing all such messages, the worker will
wait to receive a help-completed message for all work
assignments before moving on to the next iteration. This is is
done to guarantee the slack-bound. There is a small window
in which both the helpee and a helper may begin the same
work, which can be addressed by having the helpee only
commit changes corresponding to reassigned work after it
confirms that the helper acknowledged the cancel-help
message. Again, we are relying here on the robustness of
data-parallel iterative convergent algorithms to delayed and
out-of-order updates.

5. Evaluation
This section evaluates the effectiveness of FlexRR. Results
are reported for sets of Amazon EC2 and Microsoft Azure
instances as well as for local clusters. The results support a
number of important findings: (1) significant straggler prob-
lems occur in real cloud infrastructures, (2) when straggler
problems occur, FlexRR greatly outperforms BSP and SSP,
achieving near-ideal performance for all of the various strag-
gler patterns studied; (3) to achieve ideal performance, the
RapidReassignment and SSP techniques need to be com-
bined, as is done by FlexRR, as neither alone is sufficient; (4)
FlexRR is not sensitive to the choices of run-time configura-
tion parameters, within a wide range of reasonable settings.

5.1 Experimental Setup

Experimental Platforms. We use a variety of clusters for
our experiments. Cluster-A is 16 virtual machines running
on a dedicated cluster of 16 physical machines, each with a 2
quad-core Intel Xeon E5430 processor running at 2.66GHz,
connected via 1 Gbps Ethernet (≈700 Mbps observed). Each
VM runs on one physical machine, and is configured with
8 vCPUs and 15 GB memory, running Debian Linux 7.0.
Cluster-B is a cluster of 64 Amazon EC2 c4.2xlarge in-
stances. Each instance has 8 vCPUs and 15 GB memory,
running 64-bit Ubuntu Server 14.04 LTS (HVM). Cluster-C
is a cluster of 64 Amazon EC2 c4.xlarge instances, a lower
class version of Cluster-B. Each instance has 4 vCPUs and
7.5 GB memory, running 64-bit Ubuntu Server 14.04 LTS
(HVM). From our testing using iperf, we observe a band-
width of 1 Gbps between each pair of EC2 instances. Cluster-
D is a cluster of 64 Microsoft Azure A4 Standard instances.
Each instance has 8 vCPUs and 15 GB memory, running
64-bit Ubuntu Server 14.04 LTS (HVM) on Intel Xeon E5507
processors. Cluster-E is a cluster of 64 Microsoft Azure A3
Standard instances. Each instance has 4 vCPUs and 7 GB
memory, running 64-bit Ubuntu Server 14.04 LTS (HVM) on
AMD Opteron 4171 HE processors. From our testing using
iperf, we observed a bandwidth of 1.1 Gbps between each
pair of Azure instances. Cluster-F is a PRObE Nome [25]
dedicated cluster of 128 high-end computers running Ubuntu
14.04. Each machine contains 4 quad-core AMD Opteron
8354 CPUs (16 physical cores per machine) and 32GB of
RAM. The machines are connected via 1Gb Ethernet.

For experiments that control and/or instrument straggler
causes, we primarily use Cluster-A. The other five clusters
are used to experiment with naturally occurring stragglers in
two public clouds and for a larger-scale example. We use our
limited access to Cluster-F to experiment on a large problem
and dataset that does not fit on the other clusters.

Naturally-occurring and Injected Straggler Patterns.
Our goal is to experiment with a wide variety of straggler pat-
terns that are likely to be encountered in practice, as well as
with more extreme patterns that provide stress tests. Our ex-
periments with EC2, Azure, and Nome provide evaluation in
the presence of a variety of naturally-occurring stragglers in
several real infrastructures. But, we are unable to instrument
these systems to evaluate the causes or particular nature of
those stragglers; we consistently observe straggler problems,
but whatever happens happens when using public clouds. To
evaluate a broader range of straggler effects and intensities
beyond what arose during the particular times of the exper-
iments, and to directly measure attributable delays, we also
perform more controlled experiments with injected transient
stragglers, using three distinct methodologies:

Slow Worker Pattern: Models transient worker slowdown
by inserting sleep commands into worker threads. At each
of 10 possible delay points within an iteration, each worker
decides (independently) to be slowed, with 1% probability,
for a period uniformly randomly chosen between 0–2× the
duration of an iteration. Naturally, multiple (or no) workers
may be slowed at any given time. We denote the transient
delay intensity % (delay % for short) to be the percentage by
which a worker is slowed (e.g., 100% delay means runs twice
as slow). To simulate the effect of a worker being slow, we
divide each iteration into 1000 parts and insert milliseconds-
long sleep commands at each of these 1000 points. For a
delay % of d within a t second iteration, each of these sleeps
are d× t milliseconds long. For example, for a 50% delay
within a 6 second iteration, we insert a 3ms sleep at each
point.

Disrupted Machine Pattern: Models transient resource
contention (e.g., due to sub-machine allocation or a back-
ground OS process) by running a disruptor process that
takes away CPU resources. Every 20 seconds, each machine
independently starts up a disruptor process with 20% proba-
bility. The disruptor launches a number of threads that each
executes a tight computational loop for 20 seconds. For a
transient delay intensity % of d on a p-core machine running
p application threads, the disruptor launches d× p processes
of its own. For example, on our 8-core machines running 8
worker threads, a 200% delay means having the disruptor
launch 16 threads. Such a delay experienced by a worker for
a whole iteration will cause it to run roughly 200% slower
than without delays.

Power-Law Pattern: Based on a real-world straggler pat-
tern [42], this uses a power-law distribution [44] to model
the time t for a worker to complete an iteration: p(t) ∝ tα ,

where α is the parameter that controls the “skewness” of
the distribution. sleep commands are used, as in the Slow
Worker Pattern, to extend an iteration as determined. Smaller
α makes the distribution more “flat” and leads to more delay
on average. Each experiment uses a fixed α , and the iteration
time of each worker is chosen independently from this dis-
tribution. When we set the α parameter to 11, the iteration
times in our emulated environment without FlexRR have the
same distribution as was measured on real clusters in [42].

We also study a persistent straggler pattern where half the
machines get 75% of the work per iteration—such uneven
workloads could arise in cases where data processing skew is
correlated with data placement.

Systems Compared. We compare the speed and conver-
gence rates of four modes implemented in FlexRR: 5

BSP Classic BSP execution
SSP SSP execution
BSP RR BSP with our RapidReassignment
FlexRR Our solution
Ideal Best possible (computed lower bound)

We also compute a value termed “Ideal”, which represents
the speed that should be achieved if all work is at all times
perfectly balanced with no overhead. Reporting results for
BSP RR and SSP (without RapidReassignment) enables
us to study the impact of RapidReassignment and flexible
consistency bounds in isolation versus in combination, as in
FlexRR. For SSP, we use a slack-bound of 1 in all experiments
after verifying that it leads to the fastest convergence on these
benchmarks.

FlexRR features several run-time configuration parame-
ters such as helper group size and work assignment sizes.
Table 1 lists these parameters, the range of values studied,
and their default values. The default values are the best set-
tings obtained after extensive experimentation over the range
of parameters shown. Section 5.7 provides a sensitivity analy-
sis on the parameter settings, showing that FlexRR performs
well over a broad range of settings.

Table 1: FlexRR Parameter Settings

Parameter Range Default
Helper group size 2–16 4
Initial work assignment 1.25%–15% 2.5%
Follow-up work assignment 2.5%–30% 5%
Message checks/iteration 20–50k 100
Straggler trigger threshold 10%–40% 20%

5 Although we do not show results of comparisons to other systems, the
base system in which we integrated FlexRR compares favorably to state-
of-the-art frameworks, as noted in Section 2.2. For example, its BSP mode
is faster than GraphLab [26, 38] by 10–14× for MF and 50–100% for
LDA [15], which in turn has been shown to outperform Hadoop and Spark
implementations [27, 38]. It also outperforms efficient single-threaded
implementations of MF and LDA by 99× and 62×, respectively, when
using 8 64-core machines [15].

Experimental Methodology. Every experiment was run
at least thrice, and we report arithmetic means. In experiments
that had injected stragglers, the first run was conducted from
smallest delay injections to largest, the second in reverse
order, and the third in random order.

5.2 Application Benchmarks

We use three popular iterative ML applications.
Matrix Factorization (MF) is a technique commonly

used in recommendation systems, such as recommending
movies to users on Netflix (a.k.a. collaborative filtering). The
key idea is to discover latent interactions between the two en-
tities (e.g., users and movies) via matrix factorization. Given
a partially filled matrix X (e.g., a rating matrix where en-
try (i, j) is user i’s rating of movie j), matrix factorization
factorizes X into factor matrices L and R such that their prod-
uct approximates X (i.e., X ≈ LR). Like many other sys-
tems [14, 15, 24, 34], we implement MF using the stochastic
gradient descent (SGD) algorithm. Each worker is assigned a
subset of the observed entries in X ; in every iteration, each
worker processes every element of its assigned subset and
updates the corresponding row of L and column of R based
on the gradient. L and R are stored in the parameter server.

Our MF experiments use the Netflix dataset, which is a
480k-by-18k sparse matrix with 100m known elements. They
are configured to factor it into the product of two matrices
with rank 500 for Cluster-A and rank 1000 for Cluster-
B, Cluster-C, Cluster-D and Cluster-E. We also conduct
an experiment on Cluster-F using a synthetically enlarged
version of the Netflix dataset that is 256 times the original.
It’s a 7683k-by-284k sparse matrix with 4.24 billion known
elements with rank 100.

Multinomial Logistic Regression (MLR) is a popular
model for multi-way classification, such as used in the
last layer of deep learning models for image classifica-
tion [33] or text classification [37]. In MLR, the likelihood
that each (d-dimensional) observation x ∈ Rd belongs to
each of the K classes is modeled by softmax transforma-
tion p(class=k|x) = exp(wT

k x)
∑ j exp(wT

j x)
, where {w j}K

j=1 is the linear

(d-dimensional) weights associated with each class and are
considered the model parameters. The weight vectors are
stored in the parameter server, and we train the MLR model
using SGD where each gradient updates the full model [9].

Our MLR experiments use the ImageNet dataset [47] with
LLC features [50], containing 64k observations with a feature
dimension of 21,504 and 1000 classes.

Latent Dirichlet Allocation (LDA) is an unsupervised
method for discovering hidden semantic structures (topics)
in an unstructured collection of documents, each consisting
of a bag (multi-set) of words. LDA discovers the topics via
word co-occurrence. For example, “Obama” is more likely
to co-occur with “Congress” than “super-nova”, and thus
“Obama” and “Congress” are categorized to the same topic
associated with political terms, and “super-nova” to another

0

5

10

15

20

25

30

Tim
e p

er
 ite

ra
tio

n (
se

c)

BSP
SSP
BSP RR
FlexRR

c4.xlarge c4.2xlarge

Figure 4: EC2, LDA, no injected
delay

0
10
20
30
40
50
60
70
80

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 5: PRObE Nome, large
MF, no injected delay

topic associated with scientific terms. Further, a document
with many instances of “Obama” would be assigned a topic
distribution that peaks for the politics topics. LDA learns the
hidden topics and the documents’ associations with those
topics jointly. It is often used for news categorization, visual
pattern discovery in images, ancestral grouping from genetics
data, and community detection in social networks.

Our LDA solver implements collapsed Gibbs sampling [28].
In every iteration, each worker goes through its assigned doc-
uments and makes adjustments to the topic assignment of
the documents and the words. The LDA experiments use the
Nytimes dataset [41], containing 100m words in 300k docu-
ments with a vocabulary size of 100k. They are configured
to classify words and documents into 500 topics for Cluster-
A and 1000 topics for Cluster-B, Cluster-C, Cluster-D and
Cluster-E.

5.3 Naturally-occurring Straggler Results

We performed experiments on Amazon EC2, Microsoft Azure
and PRObE Nome to evaluate FlexRR in the presence of
naturally-occurring straggler effects observed during the
particular times of the experiments. No synthetic straggler
effects are injected during these experiments.

Amazon EC2 results. Figure 1 (on page 1) and Figure 4
show the results for MF and LDA, respectively, Cluster-B
(c4.2xlarge VMs) and Cluster-C (c4.xlarge VMs). Using
c4.2xlarge VMs, FlexRR reduces time-per-iteration by 35%
(25%) for MF and by 34% (15%) for LDA relative to BSP
(SSP, respectively). Using c4.xlarge VMs, the reductions
are 53% (39%) for MF and 49% (32%) for LDA. The
improvements are larger for c4.xlarge VMs, because these
less expensive VMs experience more transient straggler
effects.

The improvements on EC2 come despite executing rel-
atively short experiments on relatively expensive EC2 in-
stances that would be expected to have minimal resource
sharing with other tenant activities, highlighting the real-ness
of transient stragglers in cloud infrastructures.

Microsoft Azure results. Figure 6 shows the results of
MF on Cluster-D (A4 VMs) and Cluster-E (A3 VMs) on Mi-
crosoft Azure. Using the A4 VMs, FlexRR reduces time-per-
iteration by 43% (32%) relative to BSP (SSP, respectively).
Using the A3 VMs, FlexRR reduces time-per-iteration by
56% (38%) relative to BSP (SSP). While the A4 instances
are bigger and more expensive VMs, the times-per-iteration
are larger than on the A3 instances because the A3 CPUs

A4 Standard A3 Standard0

5

10

15

20

25

30

35

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 6: Microsoft Azure, MF, no injected delay

perform better on MF’s floating point computations. Nonethe-
less, significant straggler effects are observed for both setups,
and the results are akin to those for the c4.xlarge VMs on
EC2.

PRObE Nome large MF experiment. To verify FlexRR’s
effectiveness for a larger workload, we used the Netflix * 256
synthetically enlarged dataset on Cluster-F. Figure 5 shows
that FlexRR reduces time per iteration by 21% over SSP and
51% over BSP, even on this dedicated cluster with no injected
delays. As expected, more straggler effects are observed
as cluster size increases, and FlexRR effectiveness is not
hampered by the increased problem size. Cluster-F displayed
less of a straggler problem due to the dedicated nature of
the cluster and a higher quality network then the AWS EC2
Clusters.

5.4 Slow Worker Pattern Results

This section studies the speed and convergence rate of the
ML applications under the Slow Worker Pattern.

5.4.1 Speed Tests

For each application, we measured the time-per-iteration,
Overall run time

Number o f iterations , for the four modes, varying the transient
delay intensity %. Each experiment is run for 20 iterations.
(Running more iterations yields the same results.)

Results on Cluster-A. Figure 7a and Figure 7b show the
results for the MF and LDA applications running on Cluster-
A. MLR results looks similar to MF (not shown due to space
constraints). BSP slows down linearly with delay intensity. By
controlling straggler intensity, we see that SSP can mitigate
delays below its slack-bound (e.g., see the 50% delay intensity
points), but then too suffers linearly. (The natural stragglers
from Section 5.3 were clearly too big for SSP alone.) FlexRR,
on the other hand, nearly matches Ideal even up to 400%
delays, which are more extreme that should be expected
in practice. We measured the percentage of work that gets
reassigned by FlexRR: it ranges from 8–9% of the work
at 0% delay (i.e., no injected delays) to 19–22% at 400%
delay. Even at 0% delay, FlexRR runs 18% faster than BSP
on MF and LDA and 13% faster than BSP on MLR. The
figures also show that our RapidReassignment technique can

be used in BSP to decrease its straggler penalty, but it is
FlexRR’s combination of flexible consistency bounds and
RapidReassignment that nearly matches Ideal.

At high delay % values, there is some divergence from
Ideal for LDA. That is because LDA uses a special mechanism
to handle its local state, which involves two extra model
parameter updates for each work re-assignment. At higher
delays, more work is re-assigned, thus these extra updates
begin to have an effect on the run-time, causing FlexRR to
deviate from Ideal.

Results on Cluster-B. Figure 7c shows the results for MF
on the larger Amazon EC2 cluster, which are qualitatively
the same as on Cluster-A. As on Cluster-A, BSP slows down
linearly with delay intensity, SSP can mitigate stragglers
only up to its slack-bound, and FlexRR nearly matches Ideal.
FlexRR reassigns 21% of the work at 0% delay and 31% at
400% delay. The main difference between the Cluster-B and
Cluster-A results is that on Cluster-B there is an even larger
separation between FlexRR and the next best approach (BSP
with our RapidReassignment). E.g., at 400% delay, BSP RR
is 10 times slower than FlexRR. At 0% delay (no injected
delays, corresponding to Figure 1 (right)), FlexRR is 35%
faster than BSP and 25% faster than SSP, because of non-
injected performance jitter. The results for LDA on Cluster-B
are qualitatively as on Cluster-A (not shown due to space
constraints).

5.4.2 Convergence Tests

We also measure the time to convergence for the ML applica-
tions running in each of the modes. We calculate Ideal by mul-
tiplying the Ideal time-per-iteration values from Section 5.4.1
by the number of iterations needed to reach convergence by
the BSP experiment.6

Criteria for Convergence. We use the following stopping
criterion, based on guidance from our ML experts: If the
objective value (for MF) or log-likelihood (for LDA) of the
solution changes less than 2% over the course of 10 iterations,
then convergence is considered to have been reached. We also
verified that they reached the same objective value. Because
the objective value calculation is relatively expensive, and we
wanted to observe it frequently, we did it offline on FlexRR
checkpoints.

Convergence Test Results. Figure 8a shows the results
for MF. For all delay %, BSP (and BSP RR) required 112 iter-
ations to reach convergence and SSP required 113 iterations.
FlexRR required 114 iterations, with the exception of 400%
delay, where it took 115 iterations. Even with the extra itera-
tions required to reach convergence, FlexRR converged 10%
faster than BSP at 0% delay injected. With delays injected,
BSP suffered from linear increase in convergence time, while
FlexRR effectively matched the Ideal convergence time even

6 We use BSP iterations in this lower bound because the flexible consistency
bounds of FlexRR and SSP can lead to a (modest) increase in the number of
iterations needed [13, 31], e.g., 2-3 extra iterations in our experiments.

0 100 200 300 4000

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(a) MF Cluster-A

0 100 200 300 4000

50

100

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(b) LDA Cluster-A

0 100 200 300 4000

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(c) MF Cluster-B

Figure 7: Slow Worker Pattern Speed Tests

0 100 200 300 4000

2000

4000

6000

8000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
SSP
BSP RR
FlexRR
Ideal

(a) MF Convergence

0 100 200 300 4000

1000

2000

3000

4000

5000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
SSP
BSP RR
FlexRR
Ideal

(b) LDA Convergence
Figure 8: Convergence Tests

0 100 200 300 4000

10

20

30

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

Figure 9: Disrupted Machine Pattern

Alpha = 4 Alpha = 7 Alpha = 110

20

40

60

80

100

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 10: MF Speed, Power-Law Pattern

at 400% delay. As expected, adding RapidReassignment to
BSP improves its convergence times, to faster than SSP but
still much slower than FlexRR.

Figure 8b shows the results for LDA. For all delay %, BSP
required 41 iterations to converge. For 0%, 50%, and 100%
delays, FlexRR required 42 iterations, for 200% and 300%
delays it required 43 iterations, and for 400% delay it required
44 iterations. Despite the need for these extra iterations,
FlexRR converges significantly faster than BSP. With no
injected delays, FlexRR converged 18% faster than BSP, and
maintains near-Ideal convergence time with increasing delays.
BSP, on the other hand, suffers from a linear increase in
convergence time when delays are injected. LDA deviates
from Ideal at higher delays for the same local state issue
discussed in Section 5.4.1.

5.5 Other Straggler Patterns

Disrupted Machine Pattern. We compare the average time-
per-iteration (20 iterations) of FlexRR to the alternative
modes for the Disrupted Machine Pattern. Figure 9 shows
results for MF on Cluster-A—results for LDA and MLR are
qualitatively similar. SSP and BSP RR individually reduce
the delay experienced by BSP by up to 49% and 42%, re-
spectively. The combination of the two techniques in FlexRR
matches Ideal, reducing the run-time by up to 63%.

Power-Law Pattern Results. Next, We compare the av-
erage time-per-iteration (20 iterations) of FlexRR to the alter-
native modes for the Power-Law Pattern. We present results
on Cluster-A for each of our applications, setting α to 4, 7,
and 11. Recall that α = 11 emulates a real cluster measured
in [42], and the configurations with smaller α values yield
more severe delay. Figure 10 shows the results for MF. For
α = 11, SSP and BSP RR are faster than BSP by 39% and
40%, respectively. When the two techniques are combined
in FlexRR, the run-time is 48% faster than BSP. Similarly
to experiments conducted in earlier sections, with increasing
delays (smaller α), the other three modes experienced signifi-
cant increases in run-times, while FlexRR experienced only
slight increases.

The results for MLR and LDA show similar trends. For
α = 11, SSP and BSP RR were 36% and 31% respectively
faster than BSP for MLR and 37% and 42% respectively faster
than BSP for LDA. FlexRR was 43% and 52% faster than
BSP on MLR and LDA respectively. With increasing delays
(smaller α), the other three modes experienced significant
increases in run-times for both MLR and LDA. FlexRR
experienced only modest delays for MLR and somewhat
larger delays for LDA (not shown due to space constraints).
In all cases, FlexRR significantly outperforms the other three
modes.

Uneven Workload Distribution. While FlexRR was orig-
inally designed to mitigate transient stragglers, it is also effec-
tive at dealing with long-term workload differences among
workers. Figure 12 shows an experiment on Cluster-A where
half of the machines are assigned 75% of the workload, and
the remaining half of machines are assigned 25% of the work-
load. FlexRR was able to mitigate the straggler effects of the
uneven workload distribution, running at close to ideal speed

0 100 200 300 4000

10

20

30

40

50

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
2 Helpers
3 Helpers
4 Helpers
8 Helper
12 Helpers
16 Helper
Ideal

(a) Helper Group Size

0 100 200 300 4000

20

40

60

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
2.5%
5%
10%
20%
30%
Ideal

(b) Work Assignment Size

0 100 200 300 4000

20

40

60

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
20 Checks
100 Checks
800 Checks
10K Checks
25K Checks
50K Checks
Ideal

(c) Message Check Frequency
Figure 11: Sensitivity Tests

0
5

10
15
20
25
30
35
40

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP Uneven
BSPRR Uneven
SSP Uneven
FlexRR Uneven
FlexRR Even

Figure 12: Uneven Workload
0

5

10

15

20

25

30

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP 10% 25% 50% 100%

Figure 13: Partial Replication

shown in the FlexRR Even Bar, while SSP experienced a 54%
slowdown.

5.6 Partial Replication

In all previous experiments, workers replicated 100% of the
input data belonging to the workers that they are helping. We
found that FlexRR is still effective when workers replicate
only a portion of the input data, and thus are only eligible to
help with that portion. Figure 13 shows the MF application
with no injected delays run on Cluster-A with different
percentages of the input data replicated on the helper workers.
FlexRR with just 25% replication is close to FlexRR with
100% replication and much better than SSP (and BSP—not
shown).

5.7 Sensitivity Study

This section reports on tests used to determine good settings
for FlexRR parameters. We vary each parameter across its
Table 1 range while using the default values for other pa-
rameters. For brevity, we show sensitivity results for MF’s
average time-per-iteration (for 20 iterations) when running on
Cluster-A under the Slow Worker straggler pattern, although
similar results hold for the other two applications, conver-
gence time, and the other clusters (same default settings used
in all experiments, on all clusters, reported above).

Helper Group Size Test. Recall that the helper group is
the set of workers to whom a worker is eligible to provide
assistance. Figure 11a shows the results of varying the helper
group size from zero helpers, which is equivalent to running
in SSP mode, to sixteen helpers for each worker. The results
show that, once the helper group size is set to 3 or higher,
near-Ideal performance is achieved. Closer inspection reveals
that using four helpers provides the best performance. But,
the difference between settings from 3 to 16 is negligible.

Work Assignment Size Test. One of the key design
decisions was the amount of work to be re-assigned in
do-this assignment messages. Work assignments occur

in two different sizes, an initial work assignment size and
a follow-up work assignment size. Figure 11b shows the
results of varying the follow-up work assignment size from 0%
(equivalent to SSP) to 30%. The initial work assignment size
is always half the follow-up work assignment size. Near-Ideal
performance is achieved across the range of non-zero sizes,
although as delays increased, the larger work assignments
do perform worse. This occurs because of a rare corner case
where workers that run slowly can re-assign a portion of
their work to a faster worker that starts to complete the extra
work but then is delayed significantly. Because the current
implementation of FlexRR does not look to reassign work
that has already been reassigned and accepted, other workers
end up waiting in this case. This corner case is not a problem
for smaller work assignments, because the helper does not
fall behind significantly.

Message Check Frequency Test. FlexRR depends on
messages between workers to keep track of progress and
re-assign work. The message check frequency is the number
of times a worker checks for incoming messages during an
iteration. If the checks are not performed often enough, the
system runs the risk of not reacting fast enough, while check-
ing too often can cause an unnecessary overhead. Figure 11c
shows that any frequency between 100 and 10K performs
well, but the performance suffers once the frequency is greater
than 10K.

6. Conclusion
FlexRR addresses the straggler problem for iterative con-
vergent data-parallel ML. By integrating flexible consis-
tency bounds with temporary peer-to-peer work reassign-
ment, FlexRR successfully avoids having unhindered worker
threads wait for workers experiencing slowdowns. Experi-
ments with real ML applications under a variety of naturally-
occurring and synthetic straggler behaviors confirm that
FlexRR achieves near-ideal performance. On Amazon EC2
and Microsoft Azure, with no injected delays, this results in
15–56% reduction in runtimes, on average, over SSP and BSP.
Experiments with various synthetic straggler patterns confirm
that FlexRR consistently mitigates stragglers, resulting in up
to 5–10× improvement over BSP and SSP in extreme cases.

Acknowledgments
We thank the members and companies of the PDL Consor-
tium: Broadcom, Citadel, EMC, Facebook, Google, Hewlett-
Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB,
NetApp, Oracle, Samsung, Seagate Technology, Tintri, Two
Sigma, Uber, Veritas and Western Digital for their interest,
insights, feedback, and support. This research is supported in
part by Intel as part of the Intel Science and Technology Cen-
ter for Cloud Computing (ISTC-CC), National Science Foun-
dation under awards CNS-1042537, CCF-1533858, CNS-
1042543 (PRObE [25]) and DARPA Grant FA87501220324.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] U. A. Acar, A. Chargueraud, and M. Rainey. Scheduling paral-
lel programs by work stealing with private deques. In Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, pages 219–228.
ACM, 2013.

[3] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.
Smola. Scalable inference in latent variable models. In WSDM,
pages 123–132, 2012.

[4] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. Loose
synchronization for large-scale networked systems. In USENIX
Annual Tech, 2006.

[5] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Effective straggler mitigation: Attack of the clones. In NSDI’13,
pages 185–198, 2013.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
map-reduce clusters using Mantri. In Proceedings of the
9th USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–16. USENIX Association,
2010.

[7] Apache Hadoop. http://hadoop.apache.org/.

[8] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The Influence
of Operating Systems on the Performance of Collective Opera-
tions at Extreme Scale. In IEEE International Conference on
Cluster Computing, pages 1–12, 2006.

[9] C. M. Bishop et al. Pattern recognition and machine learning,
volume 4. springer New York, 2006.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 46(5):720–748, 1999.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and
efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

[12] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project adam: Building an efficient and scalable deep learning
training system. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’14, pages 571–582. USENIX Association, 2014.

[13] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,
K. Keeton, and E. Xing. Solving the straggler problem with
bounded staleness. In USENIX conference on Hot topics in
operating systems (HotOS), 2013.

[14] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P.
Xing. Exploiting bounded staleness to speed up big data
analytics. In USENIX ATC, pages 37–48, 2014.

[15] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky,
Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P.
Xing. Exploiting iterative-ness for parallel ML computations.
In Proceedings of the ACM Symposium on Cloud Computing,
pages 1–14. ACM, 2014.

[16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing.
Geeps: Scalable deep learning on distributed gpus with a gpu-
specialized parameter server. In Proceedings of the Eleventh
European Conference on Computer Systems, page 4. ACM,
2016.

[17] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakr-
ishnan, and S. Rao. Reservation-based scheduling: If you’re
late don’t blame us! In Proceedings of the ACM Symposium
on Cloud Computing, SOCC’14, pages 2:1–2:14. ACM, 2014.

[18] J. Dean. Achieving rapid response times in large online
services. In Berkeley AMPLab Cloud Seminar, 2012.

[19] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[20] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha. Scalable work stealing. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, SC’09, pages 53:1–53:11. ACM, 2009.

[21] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and
C.-W. Tseng. Dynamic load balancing of unbalanced computa-
tions using message passing. In Parallel and Distributed Pro-
cessing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–8, 2007.

[22] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fon-
seca. Jockey: guaranteed job latency in data parallel clusters.
In Proceedings of the 7th ACM European conference on Com-
puter Systems, pages 99–112. ACM, 2012.

[23] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti.
The impact of system design parameters on application noise
sensitivity. In Proceedings of the 2010 IEEE International
Conference on Cluster Computing, CLUSTER’10, pages 146–
155. IEEE Computer Society, 2010.

[24] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-
scale matrix factorization with distributed stochastic gradient
descent. In KDD, 2011.

[25] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE:
A thousand-node experimental cluster for computer systems
research. USENIX; login, 38(3), 2013.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In Proc. OSDI, 2012.

[27] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In 11th USENIX Symposium

http://hadoop.apache.org/

on Operating Systems Design and Implementation (OSDI 14),
pages 599–613, 2014.

[28] T. L. Griffiths and M. Steyvers. Finding scientific topics.
Proceedings of the National Academy of Sciences of the United
States of America, 2004.

[29] A. Harlap, G. R. Ganger, and P. B. Gibbons. Tier ml: Using
tiers of reliability for agile elasticity in machine learning. 2016.

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In NSDI, volume 11, pages 22–22, 2011.

[31] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing. More effective
distributed ML via a Stale Synchronous Parallel parameter
server. In NIPS, 2013.

[32] E. Krevat, J. Tucek, and G. R. Ganger. Disks are like
snowflakes: no two are alike. In USENIX conference on Hot
topics in operating systems (HotOS), 2011.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[34] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are
fast. In NIPS, 2009.

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In Proc.
OSDI, pages 583–598, 2014.

[36] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communica-
tion efficient distributed machine learning with the parameter
server. In NIPS, pages 19–27, 2014.

[37] J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regres-
sion. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
547–556. ACM, 2009.

[38] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new parallel framework for
machine learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2010.

[39] Y. Low, G. Joseph, K. Aapo, D. Bickson, C. Guestrin, and
M. Hellerstein, Joseph. Distributed GraphLab: A framework
for machine learning and data mining in the cloud. PVLDB,
2012.

[40] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[41] New York Times dataset. http://www.ldc.upenn.
edu/.

[42] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing
supercomputer performance: Achieving optimal performance
on the 8,192 processors of ASCI Q. In Proceedings of the
2003 ACM/IEEE conference on Supercomputing, SC’03, pages
55–55. ACM, 2003.

[43] R. Power and J. Li. Piccolo: building fast, distributed programs
with partitioned tables. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation,
OSDI’10, pages 1–14. USENIX Association, 2010.

[44] Power-law distribution. http://en.wikipedia.org/
wiki/Power_law.

[45] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM
Symposium on Cloud Computing, page 7. ACM, 2012.

[46] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems. In Middleware 2001, pages 329–350. Springer, 2001.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge, 2014.

[48] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. ACM SIGCOMM Computer Communi-
cation Review, 31(4):149–160, 2001.

[49] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch.
alsched: Algebraic scheduling of mixed workloads in hetero-
geneous clouds. In Proceedings of the Third ACM Symposium
on Cloud Computing, page 25. ACM, 2012.

[50] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 3360–3367. IEEE, 2010.

[51] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. Hot-
Cloud, 10:10–10, 2010.

[52] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving MapReduce performance in heteroge-
neous environments. In OSDI, 2008.

http://www.ldc.upenn.edu/
http://www.ldc.upenn.edu/
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Power_law

	Introduction
	Background and Related Work
	Iterative ML, BSP, and Stragglers
	Related Work Addressing Stragglers

	FlexRR Design & Implementation
	Workers and Execution Management
	Parameter Server for Shared State
	Straggler Mitigation

	RapidReassignment Design
	Worker Groups
	Worker Communication
	RapidReassignment Actions

	Evaluation
	Experimental Setup
	Application Benchmarks
	Naturally-occurring Straggler Results
	Slow Worker Pattern Results
	Speed Tests
	Convergence Tests

	Other Straggler Patterns
	Partial Replication
	Sensitivity Study

	Conclusion

