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Abstract
Web applications rely heavily on software caches to achieve
low-latency, high-throughput services. To adapt to changing
workloads, three types of learned caches (learned evictions)
have been designed in recent years: object-level learning,
learning-from-distribution, and learning-from-simple-experts.
However, we argue that the learning granularity in existing ap-
proaches is either too fine (object-level), incurring significant
computation and storage overheads, or too coarse (workload
or expert-level) to capture the differences between objects
and leaves a considerable efficiency gap.

In this work, we propose a new approach for learning in
caches (“group-level learning”), which clusters similar objects
into groups and performs learning and eviction at the group
level. Learning at the group level accumulates more signals
for learning, leverages more features with adaptive weights,
and amortizes overheads over objects, thereby achieving both
high efficiency and high throughput.

We designed and implemented GL-Cache on an open-
source production cache to demonstrate group-level learning.
Evaluations on 118 production block I/O and CDN cache
traces show that GL-Cache has a higher hit ratio and higher
throughput than state-of-the-art designs. Compared to LRB
(object-level learning), GL-Cache improves throughput by
228× and hit ratio by 7% on average across cache sizes. For
10% of the traces (P90), GL-Cache provides a 25% hit ra-
tio increase from LRB. Compared to the best of all learned
caches, GL-Cache achieves a 64% higher throughput, a 3%
higher hit ratio on average, and a 13% hit ratio increase at the
P90.

1 Introduction
Large-scale cache deployments enable the success of to-

day’s Internet. Companies have deployed software caches
throughout various layers of the data center infrastructure:
local and remote storage block I/O caches, in-memory and on-
flash key-value caches. Caches are the key to fast data serving
and consume a vast amount of resources. For example, Twitter
reports that TBs of DRAMs are used for caching [104], and
Netflix reports 10s of PBs of storage in use for caching [70].

The main driving force of cache deployments is the cache’s
ability to serve data with high throughput and low latency.
Retrieving data from a cache (e.g., in DRAM) is thousands of
times faster than retrieving it from the backend (e.g., in spin-
ning disks). Because caches are often deployed on expensive
storage media with limited capacity, the cache sizes are often
much smaller than the dataset sizes. Thus, deciding what data
to store in the cache is critical. A more efficient cache stores
more useful data and serves more requests without hitting
backend storage systems. Cache efficiency is often measured
by hit ratio — the fraction of requests served from the cache
(termed “hits”). When a cache is full, it uses an eviction
algorithm to decide what data to keep and what to evict, and
thus, the eviction algorithm is critical to cache efficiency.

Over the years, many eviction algorithms have been pro-
posed to leverage different object features to make better
eviction decisions. For example, several LRU variants [41–
43,69,76,85] use diverse notions of recency to choose eviction
candidates; some algorithms combine frequency and recency
to score objects in different ways [4, 15, 26, 28, 56, 92]; others
use a composition of frequency and object size [17,20]. Since
different features acquire varying degrees of importance for
different workloads, using a specific way to combine one or
two object features typically only achieves high efficiency
on some workloads (§4.5). Recently, several works have em-
ployed machine learning to improve cache evictions. We call
these designs “learned caches”.

We classify learned caches into three categories. First,
“object-level learning”, such as LRB [87], learns the next
access time for each object using dozens of object features
and evicts the object with the furthest predicted request time.
Second, “learning-from-distribution” models request proba-
bility distributions to inform eviction decisions. For example,
LHD [7] measures object hit density using age and size, and
evicts the object with the lowest hit density. Third, “learning-
from-simple-experts”, such as LeCaR [92] and Cacheus [82],
performs evictions by choosing eviction candidates recom-
mended by experts (e.g., LRU and LFU), and updates experts’
weights based on their past performance on the workload.

Because object-level learning, such as LRB, leverages more



Table 1: Comparison of different learned caches (numbers describe the example systems).

Learning approach
Example
system

Learning
granularity

Features
for eviction

Storage overhead
(bytes per object)

Potential
efficiency

Throughput
relative to FIFO

Object-level learning LRB [87] object 44 189 high 0.001-0.01
Learning-from-simple-experts Cacheus [82] expert 2 32 low 0.2-0.25
Learning-from-distribution LHD [7] workload 2 24 medium 0.2-0.25
Group-level learning (this paper) GL-Cache object group 7 <1 high 0.3-0.8

object features, learns the relative feature importance, and
performs fine-grained learning on each cached object, it has
the highest potential for achieving high efficiency. However,
predicting and ranking objects at each eviction incurs signifi-
cant computation and storage overheads as we observe LRB
suffers from a 775× slow down compared to LRU. Learning-
from-distribution has a lower computation and storage over-
head because it models request probability using fewer fea-
tures at a coarser granularity. However, it still has a lower
throughput compared to simple heuristics (e.g., LRU) because
it has to randomly sample and compare many objects at each
eviction. Moreover, the existing design (e.g., LHD [7]) does
not leverage object features other than age and size, limiting
its potential for high efficiency. Lastly, the performance of
learning-from-simple-experts, which learns the weights of
experts, highly depends on the choice of the experts. Existing
systems use simple experts and cannot leverage features not
considered by the experts (§4). We show the comparisons of
the three types of learned caches in Table 1 and discuss each
of these categories more in-depth in §2.2.

To overcome the challenges in the existing approaches to
leverage learning in caching, we propose learning at the level
of object groups (which we call group-level learning). Group-
level learning leverages multiple group-level features to learn
object-group utility for evictions. It reduces the computa-
tion and storage overheads of learning by hundreds of times
through amortization compared to learning at the object level.
Furthermore, object groups accumulate more “signals” for
learning and can leverage a variety of features for prediction,
enabling better eviction decisions.

While group-level learning seems promising, it introduces
several challenges: (1) How to group objects and perform
evictions efficiently? (2) How to measure the usefulness of
object groups (termed “utility”) to determine the best eviction
candidate? (3) How to learn and predict the object-group
utility online?

We present Group-level Learned Cache (GL-Cache) which
leverages group-level learning by overcoming these chal-
lenges. GL-Cache clusters similar objects into groups using
write time (§3.3) and evicts the least useful groups using a
merge-based eviction (§3.6). GL-Cache introduces a group
utility function (§3.4) to rank groups, which enables group-
based eviction to achieve similar efficiency as object-based
eviction (§4.2). GL-Cache uses a hybrid approach for evic-
tion: it performs the heavyweight learning at the group level
(thus amortizing the overheads) to identify the best groups
to evict. And it leverages lightweight object-level metrics to

retain a few highly useful objects from evicted groups. This
two-level eviction enables GL-Cache to achieve a superior
trade-off between learning overhead and cache efficiency.

We implemented GL-Cache in an open-source production
cache and also developed a storage-oblivious implementa-
tion for running microbenchmarks. We compare GL-Cache
with state-of-the-art designs on 118 production block I/O and
CDN cache traces. Compared to object-level learning (LRB),
group-level learning allows GL-Cache to achieve a 228×
higher throughput on average. Moreover, GL-Cache achieves
a slight improvement in hit ratio compared to LRB, with a
7% increase on average and 25% at P90 (10% of the traces)
compared to LRB. Compared to the learned cache with the
highest hit ratio, GL-Cache increases the hit ratio by 3% on
average and 13% at the P90 tail, with a 64% higher through-
put. Varying group sizes allow GL-Cache to change learning
granularity, leading to a spectrum of algorithms. Along with
two other system parameters, this spectrum enables users to
navigate the trade-off between efficiency and throughput.

This paper makes the following contributions.

• We classify existing learned caches into three categories
based on learning granularity and propose a new approach
for learning in caching — group-level learning. Group-level
learning amortizes overheads over objects in the group to
achieve high throughput. By leveraging multiple group
features and accumulating more training signals, group-
level learning also achieves a high hit ratio.

• We design and implement GL-Cache, which overcomes the
challenges of using group-level learning to achieve high
cache efficiency with low-overhead learning. For the first
time (to the best of our knowledge), a group-level utility
function is defined and used for cache eviction.

• We evaluate GL-Cache using a diverse set of 118 production
traces to illustrate and understand the high efficiency and
high throughput of group-level learning.

2 Background and motivation
2.1 Software caches in data centers

Applications rely heavily on caching to speed up data ac-
cess and increase system throughput. The two most important
metrics of cache are efficiency measured using hit ratio and
performance measured using throughput. Hit ratio is the frac-
tion of requests fulfilled by the cache without fetching from
the backend, and it measures the effectiveness of an eviction
algorithm. A cache is more efficient if it achieves a higher hit
ratio. Throughput measures the volume of requests a cache



can handle in a given duration. Higher throughput means serv-
ing the workload consumes less CPU resources and reduces
expenses.

Over the years, many algorithms have been designed
to improve cache hit ratio under different types of work-
loads [4,7,10,12,13,15,17,21,22,26,28,41–43,45,56,58,59,
68, 69, 76, 79, 82, 85, 87, 92, 98, 103, 109, 110]. However, most
of the algorithms make eviction decisions based on one or two
object features, such as recency in LRU variants [43, 76, 85],
and frequency in LFU variants [4, 48], or a combination of
two features [7, 15, 28, 92]. However, cache workloads are
often too complex to be captured by one or two features, and
different features may acquire different importance across
workloads. Furthermore, the feature importance can be differ-
ent when the same workload is served at different cache sizes,
as we show in §4.5. As a simplified example, assume a work-
load is composed of Zipf and repeated scans. When the cache
size is very small, frequency is more important in selecting
popular objects from the Zipf distribution. However, when
the cache size is large enough to store both popular objects
and repeated scans, recency may become more important in
choosing objects to cache. In addition, prior works [10, 87]
reveal a large hit ratio gap between the state-of-the-art de-
signs and the upper bound (e.g., Belady’s algorithm [8] or
flow-based offline optimal [11]), illustrating the possibility of
improving the cache efficiency further.

2.2 Learning in caching
To make cache eviction algorithms adaptive across work-

loads, cache size, and over time, recent works have explored
the idea of using machine learning in caching [7, 10, 29, 82,
87, 93, 102]. These approaches can be broadly classified into
three classes, which come with their pros and cons, as dis-
cussed below and summarized in Table 1.

2.2.1 Object-level learning
Object-level learning performs learning on each object.

Multiple works have studied the prediction of object reuse
distance [10, 14, 32, 63, 65, 86, 87, 99, 100] and popular-
ity [19, 31, 71, 107]. By predicting reuse distance, a learned
cache can mimic Belady’s algorithm [8], which evicts the ob-
ject requested the furthest in the future using an oracle. How-
ever, predicting reuse distance is challenging [87] because
an object’s reuse distance is not only inherent to the object
but is also affected by the access patterns of the workload.
For example, the reuse distance will increase if a request-
burst or scan happens between the two requests to the same
object. Moreover, cache workloads often follow Zipf distri-
butions [5, 9, 18, 104]. Thus, most objects only get a limited
number of requests. This leads to limited object-level informa-
tion for learning. Meanwhile, it is these less popular objects
that often affect cache efficiency [102]. As a result, exist-
ing works introduce approximations and proxies for learning
reuse distance. For example, LRB [87] introduces Belady
Boundary to reduce the range of reuse distance. While learn-

ing reuse distance is challenging, with careful feature engi-
neering, large enough data, and a complex model, object-level
learning may have the potential to achieve the highest hit ratio
among all learned caches. However, object-level learning
incurs prohibitively high storage and computation overheads.
Storage overhead. Both training and inference require extra
storage. While the storage overhead of training data is often
negligible with optimizations such as sampling and offloading
to cheaper storage, inference data pose a significantly higher
storage overhead. To make predictions on the object level, the
cache needs to track features for each object. For example,
LRB [87] stores 44 features (189 bytes) per object. More-
over, this large per-object metadata overhead is prohibitively
high because it needs to reside in DRAM for frequent up-
dates. Using fewer features is possible, but it leads to worse
performance (§4).
Computation overhead. Both training and inference add
computation overhead. While training data collection and
frequent re-trainings consume CPU cycles, inference is the
major source of computation overhead. The prediction in
object-level learning uses dynamic features (e.g., object age),
and the prediction results cannot be reused over time. There-
fore, object-level learning needs to sample objects and per-
form inference at each write (eviction). For example, LRB
samples 32 objects and copies their features to a matrix for
inference for each eviction. In our measurement, each evic-
tion (including feature copy, inference, and ranking) takes
200 µs on one CPU core, indicating that the cache can evict
at most 5,000 objects on a single core per second. As a com-
parison, a production server achieves over 100,000 requests
per second [75].

2.2.2 Learning-from-simple-experts
Several works use reinforcement learning to choose be-

tween multiple simple experts (eviction algorithms). For
example, LeCaR [93] uses two experts (LRU and LFU). At
each eviction, LeCaR chooses one expert to make an eviction
decision based on the experts’ weights. Similar designs can
be found in ACME [2], FRD [80], and Cacheus [82], which
use different experts and weight adjustment methods.

By using more than one algorithm for eviction, learning-
from-simple-experts can adapt to changing access patterns.
The overhead and efficiency of learning-from-simple-experts
depend on the experts. Existing systems use simple ex-
perts and thus incur lower overhead than object-level learning.
However, existing systems suffer from two problems. First,
a delay exists between a bad eviction and an update on the
expert’s weight. The cache only discovers a bad prior eviction
when the evicted object is requested again. This challenge,
commonly known as “delayed rewards” in reinforcement
learning [3, 36, 47, 90], limits the efficiency of caches that
use learning-from-simple-experts. Second, the cache effi-
ciency is bounded by the experts selected; an efficient policy
requires a good understanding of the workload. Learning-
from-simple-experts cannot leverage features that the experts



do not consider. If a feature is important to the workload
and not considered by any of the experts, then learning-from-
simple-experts will not provide a high hit ratio. Some works
used more experts [34] to capture more features. However,
using more experts incurs higher overheads because it needs
more computation and space to evaluate expert performance
and update experts’ weights.
2.2.3 Learning-from-distribution

The third type of learned cache models the request probabil-
ity distribution and makes decisions based on the distribution.
For example, LHD [7] uses the request probability distribu-
tion to calculate hit density (hits-per-space-consumed) as a
metric for eviction. Specifically, LHD learns the request prob-
ability as a function of ages and then modulates it with size to
arrive at hit density. LHD is simple yet effective and does not
require expensive inference computation to compare objects.
However, LHD’s hit density is calculated based only on two
features: age and size, and it is non-trivial to track probability
with more features. Besides, LHD cannot change relative fea-
ture importance (how features are composed). Furthermore,
because hit density does not change monotonically over time,
LHD must sample objects to rank at each eviction, limiting
its throughput due to slow random memory access.
Takeaways. We summarize the potential efficiency and over-
head of the three types of learned caches in Table 1. We ob-
serve that object-level learning has a high potential to achieve
high efficiency, but it incurs huge storage and computation
overheads. Learning-from-distribution only considers a lim-
ited number of features and has lower overhead with lower
potential for high efficiency. Although having a lower learn-
ing overhead, learning-from-distribution requires random
sampling during each eviction, which limits its throughput.
Learning-from-simple-experts highly depends on the experts
used. Existing systems such as LeCaR and Cacheus achieve
a higher hit ratio than a single expert but still leave a large hit
ratio gap compared to other learned caches (§4.3).

3 GL-Cache: Group-level learned cache
To enable a better trade-off between learning granularity

and learning overhead, we propose learning at the level of
object groups (which we term “group-level learning”). The
key idea behind group-level learning is to learn the usefulness
of groups of objects (called “utility”). Based on this idea,
we designed Group-level Learned Cache (GL-Cache), which
learns the object-group utility and evicts the least useful object
groups. We first give a high-level overview of GL-Cache’s
design and then go into the details of each component.

3.1 Overview of GL-Cache
Fig. 1 shows an overview of GL-Cache. In GL-Cache,

objects are clustered into fixed-size groups when writing to
cache (§3.3). The training module in GL-Cache collects train-
ing data online and periodically trains a model to learn the
utility of object groups (§3.5). The inference module pre-
dicts object-group utility and ranks object groups for eviction.

Fig. 1: Overview of GL-Cache. Objects are clustered into groups
for learning: feature tracking, model training, and inference are
performed on the group level.

Group-level learning requires group-level eviction: when the
cache is full, object groups are evicted using a merge-based
eviction which merges multiple groups into one, evicts most
objects, and retains a small portion of popular objects (§3.6).

3.2 Group-level learning
Group-level learning has several advantages over existing

learned caches:
Grouping amortizes overheads. Learning in caching incurs
both computation and storage overheads. In group-level learn-
ing, these overheads are amortized over multiple objects in
the group. In terms of storage, instead of adding huge per-
object metadata, the metadata overhead is only added for each
group. As a result, each object only incurs a tiny overhead
on average (less than one byte in our implementation). The
cost of inference computation is also amortized over objects.
Compared to object-level learning, which performs one infer-
ence per eviction, each inference in group-level learning is
used to evict a group of objects.
Grouping accumulates more signal. Many cache workloads
follow a Zipf distribution [16, 104], and most of the objects
receive very few requests. Because an object group has many
objects, it often receives more requests than an individual
object. More requests lead to more information on the group
level compared to the object level, which makes it easier to
learn and predict.

While group-level learning is promising, several challenges
need to be addressed to leverage the power of learning:

• How to cluster objects into groups (§3.3)?
• How to compare the usefulness of object groups (§3.4)?
• How to learn the utility of object groups (§3.5)?
• How to perform evictions at group level (§3.6)?

While the ideas of grouping [105] and learning [87] have
been studied independently in the context of caching, the com-
bination of the two ideas in group-level learning leads to the
unique challenges of understanding, defining, and learning
group utility. We discuss these challenges and how GL-Cache
overcomes them in this section.

3.3 Object groups
Using group-level learning, both learning and eviction are

performed at the granularity of an object group, which usually
contains tens to thousands of objects. Object grouping hap-
pens when an object enters the cache, and an object should
not switch groups for two reasons. First, changing groups
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Fig. 2: a) Objects grouped using write time have more similar
(smaller coefficient of variation) mean reuse time than objects
grouped randomly. As group size increases, write-time-based group-
ing become closer to random grouping. b) Different object groups
written at different times exhibit a large variation in mean reuse time.

invalidates the learning pipeline. When an object is added to
or removed from a group, the accumulated group information
becomes stale and cannot be used for learning. Second, in
implementation, changing groups often requires copying data
on the storage device. Therefore, the grouping of an object
is decided when entering the cache using simple static object
features. Depending on workload types, such features include
time, tenant id, content type, object size, etc. In this work, we
focus on grouping based on write time, which is available in
all systems and hence more generalizable.

Similar to observations made in prior works [82, 105], we
observe that objects written at a similar time exhibit similar
behaviors. Using traces from the evaluation, we measure the
mean reuse time variation of objects in (1) write-time-based
groups and (2) random groups. Fig. 2a plots the mean coeffi-
cient of variation (standard deviation over mean) of 100,000
groups for the two grouping methods at different group sizes.
Compared to random groups, write-time-based groups aggre-
gate objects with closer mean reuse time. Besides reuse time,
we have similar observations on the frequency and the group
utility defined below (not shown due to the space limit).

While objects within each write-time-based group have
similar reuse, object groups created at different times exhibit
dramatically different mean reuse times. Using a group size of
100 objects on the same trace, Fig. 2b shows that some groups
exhibit more than 10× higher mean reuse time than others.
These high-reuse-time groups are potentially good candidates
for eviction. The two observations illustrate the feasibility of
group-level learning using write-time-based grouping: objects
inside groups are similar. Grouping by write time also allows
an efficient implementation using a log-structured cache.

3.4 Utility of object groups
Identifying a good eviction candidate in object-based evic-

tion has been well-studied. When object size is uniform,
Belady [8] algorithm evicts the object that is requested the
furthest in the future. When object size is not uniform, iden-
tifying the optimal candidate is NP-hard [11]. A common
approximation is to evict the object that has the largest time till
the next request over object size (called “size-aware Belady”).
However, no metric exists that applies to object groups, and

it is not trivial to adapt object-level metrics to the group level.
In this section, we define an object-group utility function to
measure object-group usefulness. A group with a lower util-
ity is less useful and hence should be preferred for eviction.
Because identifying the optimal object for eviction (when ob-
jects do not have the same size) can be reduced to identifying
the optimal group for eviction, and the former is NP-hard [11],
finding the optimal group for eviction is also NP-hard. There-
fore, we define an empirical group utility that satisfies several
properties.

3.4.1 Desired properties
(1) Because large objects occupy more space, the utility

should consider object sizes. Groups composed of larger
objects should have lower utilities.

(2) Similar to Belady, the utility should consider the time
till the next access of objects in the group. A group of objects
that are requested further in the future should have a lower
utility. Importantly, the utility definition should properly
handle objects with no future requests.

(3) When the group size is one object, group-level learning
becomes object-level learning. In this case, ranking using the
defined utility should produce the same result as Belady.

(4) The utility should be easy and accurate to track online.
Calculating the ground truth (used for training) requires fu-
ture information, but the cache cannot wait indefinitely to
calculate it. This property requires that within a limited time
horizon, the online tracked utility should be close to the utility
calculated with complete future information. In other words,
objects requested further in the future, including the ones with
no future requests, should contribute less to the utility.

3.4.2 Utility definition
We observe that the cost of evicting one object is always

only one miss. After a cache miss, the evicted object will be
inserted into the cache. Meanwhile, the benefit of evicting
one object o is proportional to its size so and time till next
access To(t) from current time t. Therefore, similar to the
cost-benefit analysis in LFS [83] and RAMCloud [77, 78],
we define the utility of an object as its cost (one miss) over
benefit (freed space multiplied by time till its next request).

Uo(t) =
1

To(t)× so
(1)

Because GL-Cache evicts object groups, we further define
the group utility as the sum of object utilities.

Ugroup(t) = ∑
o∈group

1
To(t)× so

(2)

The utility of a group measures the penalty of evicting the
group or the benefit of keeping the group. Groups with lower
utilities are thus better candidates for eviction. We remark
that this is one definition of group utility that both satisfies the
desired properties and performs well in our experience (§4).
With this definition, we compare object-group utility and evict
the group with the lowest utility. Since the true utility relies



Fig. 3: The read flow in GL-Cache.

on the time till the next request and can only be calculated
with future information, we design GL-Cache, which learns a
model that can predict a group’s utility based on its features.

3.5 Learning object-group utility in GL-Cache
GL-Cache learns a function F that calculates a group’s

utility given its features: F (Xgroup) =Ugroup where Xgroup is
the features of an object group.
Object-group features. Features play a crucial role in learn-
ing [24, 38]. We consider two types of features in GL-Cache.
The first type is static features, which includes request rate,
write rate, miss ratio in the time window when the group was
created (the write time of the first object), and mean object
size. The second type is dynamic features, which includes
age (in seconds), the number of requests, and the number
of requested objects. Dynamic features increase over time.
Static features do not change after creating a group and cap-
ture the workload and cache states (e.g., daily scan, request
spike) during group creation time. We focus on these states
because access pattern changes are often reflected in these
metrics. For example, object groups created from scans are
good candidates for evictions, and they often co-appear with
increased request rates, write rates, and miss ratios. Com-
pared to many of the existing works [87, 100], which mostly
use dynamic features, GL-Cache uses far fewer dynamic fea-
tures because tracking dynamic features is computationally
expensive. We observe that adding more dynamic features
only brings marginal hit ratio improvement, which does not
justify the added computation overhead.

In total, GL-Cache uses seven features occupying 20 bytes
for each group or 28 bytes if mean object size and creation
time are not already tracked.
Learning model and objective function. GL-Cache uses
gradient boosting machines (GBM) because tree models do
not require feature normalization, and they have been shown
to work well in previous works [10, 87] as well as many pro-
duction environments [84,96]. We formulate the learning task
as a regression problem that minimizes the mean square loss
(L2) of object-group utilities. We also explored the ranking
objective function without observing a significant difference.
Training. GL-Cache trains a model using online collected
training data, which consists of features and utilities of object
groups. GL-Cache generates new training data by sampling
cached object groups, and it copies the features of the sampled
groups into a pre-allocated memory region. The utilities of

the sampled groups are initialized to zero at the beginning and
calculated over time. When an object o from a sampled group
is requested, GL-Cache can calculate the To(t) (time till next
request since sampling) and object utility using Eq. 1 and add
the object utility into the group utility. GL-Cache then marks
the object to ensure that it only contributes to the group utility
once. It is possible that some objects may not be requested
before training, and the online calculated group utility may
be lower than the true utility. However, as mentioned in §3.4,
these objects contribute marginally to the group utility due to
their large reuse time.

In addition, a sampled group may be evicted before being
used for training. Such evictions halt the tracking of group
utility. Inspired by prior works [69, 82], GL-Cache keeps
ghost entries for objects which have not been factored into
group utility. A future request on the ghost entry will update
the group utility, bringing it closer to the true utility.

Fig. 3 shows the read flow in GL-Cache. A successful hash
table lookup may find two types of entries: a pointer to the
object or a ghost entry. If it is a regular object, GL-Cache
first updates the group features. Further, if the object is on
a sampled group and has not contributed to the group utility,
GL-Cache also updates the group utility before returning the
data to the user. If it is a ghost entry, GL-Cache updates the
corresponding utility and removes the ghost entry from the
hash table, then returns a cache miss.

Given the access patterns change over time, the model
needs to be retrained regularly. GL-Cache retrains the model
every day (i.e., using wall clock time as a reference) because
many real-world events that trigger requests repeat on a daily
basis, such as cron jobs. In contrast, the other option of retrain-
ing every certain number of requests may cause the system to
enter metastable failure [40] when an access pattern change
increases the system load. Besides, GL-Cache chooses to
retrain from scratch each time because tree models do not
benefit from continuous training. Moreover, the inference
overhead grows with training iterations because a new tree is
added to the model in each iteration.

Inference. When GL-Cache needs to perform evictions, it
predicts the utilities of all object groups and ranks them. GL-
Cache uses the inference/ranking result for multiple evictions,
which reduces the frequency of inference and thus the com-
putation overhead. We denote eviction fraction Feviction as the
fraction of ranked groups to evict using one inference. That
is, GL-Cache performs an inference every Feviction ×Ngroup
groups where Ngroup is the total number of groups. In our
evaluation, Nranked−group is the total number of groups, but we
remark that one can also sample some groups for inference
if the total number of groups is too large. Also, the groups
are evicted over time on demand rather than all at once, and
neither training nor inference need to be on the critical path
of request serving. In summary, GL-Cache only needs to
perform 1

Feviction
inferences to write a full cache of objects.



Fig. 4: Object group utility prediction and merge-based group evic-
tion in GL-Cache.

3.6 Evictions of object groups
Learning at the object-group level introduces an interesting

challenge to cache eviction: unlike most caches which evict
one object each time, GL-Cache evicts a group of objects.
Although evicting object groups leads to lower overhead due
to batching and amortization, it may evict objects that are still
popular. GL-Cache optimizes the group eviction by using
a merge-based eviction, similar to Segcache [105]. Upon
each eviction, GL-Cache picks the least useful object group
and merges it with the Nmerge −1 object groups that are clos-
est with respect to write time. The merge process retains
Sgroup objects from the merged groups and evicts all other
objects. The retained objects form a new group, and the orig-
inal Nmerge groups are evicted. This is the only time that an
object changes its group membership in GL-Cache. Unlike
group selection, which uses ranking, object selection uses a
simple metric based on object age and size: 1

size·age where age
is the time since the last access. We choose to use this metric
because recency and size are the two most common metrics
used in other eviction algorithms (§2). GL-Cache performs
the heavyweight online learning at the group level to identify
the best groups to evict. It leverages lightweight object-level
metrics to retain a few highly useful objects. This two-level
eviction approach enables GL-Cache to achieve a superior
tradeoff between learning overhead and cache efficiency.

In summary, each eviction evicts Nmerge groups of objects
and retains one group of objects, as illustrated in Fig. 4. The
features (except mean object size) of the merge-produced
group take the mean values of the Nmerge merged groups.
Note that only the first object group is picked based on the
group utility; the next Nmerge −1 object groups are chosen as
ones with write time close to the first group. This ensures
that objects in the new group after a merge-based eviction are
still close in write time and similar. In contrast, objects from
the Nmerge least useful groups may not be similar. Clustering
similar objects into groups is critical for effective group-level
learning. In our experience, merging the Nmerge least use-
ful groups shows lower efficiency with up to 20% decrease
in hit ratio. Compared to evicting one object each time,
group-based eviction evicts more objects than needed at each
eviction, which may reduce the efficiency upper bound group-
level learning can achieve. However, we show in §4.2 that
evicting object groups can achieve hit ratios very close to Be-
lady, indicating that group eviction will not be the bottleneck
for cache efficiency.

Table 2: Parameters used in the design.
Para Meaning
Sgroup Size of an object group (in number of objects or bytes)
Nmerge Number of object groups to merge each eviction
Feviction Each inference evicts Feviction fraction of ranked groups

Table 3: Three sets of 128 traces were used in the evaluation.

Dataset # traces
# requests
(millions) Source

CloudPhysics [94] 103 2115 VM disk I/O
MSR [73] 14 410 Disk I/O
Wikimedia [87] 1 2804 CDN requests

3.7 A spectrum of GL-Cache
GL-Cache has three parameters in its design (Table 2): the

size of each object group Sgroup, the number of object groups
to merge at each eviction Nmerge, and how many groups are
evicted using one inference which is determined by Feviction.
Varying these parameters leads to a spectrum of algorithms for
optimizing hit ratio and throughput. A larger Sgroup reduces
learning granularity; a larger Nmerge retains fewer objects; and
a larger Feviction reduces the ranking frequency. Each of these
changes reduces the computation overhead with a potential hit
ratio drop. Therefore, GL-Cache allows the users to navigate
the trade-off between cache efficiency and throughput. For
scenarios that are more sensitive to overheads, such as local
cache deployments, GL-Cache can provide higher throughput
with a slightly lower hit ratio, and vice versa. In §4.6, we
show that these parameters generalize well across workloads.

4 Evaluation
In this section, we evaluate GL-Cache to answer the fol-

lowing questions.
• Will group-based eviction limit the efficiency upper bound

when compared to object-based eviction (§4.2)?
• Can GL-Cache improve hit ratio and efficiency over other

learned caches (§4.3)?
• Can GL-Cache meet production-level throughput require-

ments and how much overhead does GL-Cache add (§4.4)?
• How does GL-Cache improve efficiency without compro-

mising throughput (§4.5)?

4.1 Experiment methodology
Prototype system. GL-Cache groups objects using write time
and can be efficiently implemented using a log-structured
cache. Hence, we implement GL-Cache on top of Seg-
cache [105], an open-source production in-memory cache
that uses segment-structured (log-structured) storage. We
map an object group in GL-Cache to a “segment” in Seg-
cache and replace FIFO with the learned model. We use the
XGBoost [1] library to implement our GBM models and use
the default values for all parameters. GL-Cache has three
parameters (Table 2). In our evaluation, GL-Cache uses 1 MB
group size, merges five groups at each eviction, and evicts
5% of ranked groups after each inference. We compare GL-
Cache with Segcache [105], a segment-structured cache used



by Twitter; Cachelib [9], Meta’s production cache library,
which uses slab storage and a throughput-optimized LRU
for eviction; TinyLFU [28], implemented within Cachelib by
Meta engineers. We have also implemented LHD [7] on top
of Pelikan’s slab storage [81].
Micro-implementation. In addition to the prototype system,
we build a storage-oblivious implementation of GL-Cache
in C on top of libCacheSim [101] to compare different evic-
tion algorithms. Our implementation mimics Memcached’s
design but has neither a networking stack nor object value
storage, and we call it micro-implementation. Compared
to the prototype, the micro-implementation only performs
eviction-related metadata operations and does not consider
storage layout or system overheads such as fragmentation.
We use two sets of parameters (Table 2) to demonstrate the
spectrum of GL-Cache. The first demonstrates a better ef-
ficiency and uses Sgroup = 60 objects, Nmerge = 2 groups,
Feviction = 0.02. We call this system GL-Cache-E. The sec-
ond demonstrates a higher throughput using Sgroup = 200
objects, Nmerge = 5 groups and Feviction = 0.1, and we call it
GL-Cache-T. We remark that the parameters are not tuned per
workload. Thus GL-Cache may provide better performance
(hit ratio or throughput) with workload-specific fine-tuning.

Besides GL-Cache, we implement Cacheus [82] in C fol-
lowing the authors’ open-source Python implementation. For
LHD [7] and LRB [87], our micro-implementation used code
open-sourced by the authors. We use default parameters ex-
cept for changing the LRB optimization target from byte miss
ratio to object miss ratio (implemented by LRB’s author).
Besides state-of-the-art designs, we have also implemented
FIFO, LRU, and size-aware Belady [11].

GL-Cache trains the first model after running one day of
workload (using timestamps from the traces). Before a model
is trained, it uses FIFO to perform evictions, GL-Cache then
trains the model once a day from scratch, which has little
overhead as discussed in §3.5.
Workloads. We use a wide variety of traces representing a
diverse set of workloads from three dataset sources (Table 3).
The CloudPhysics [94] dataset includes 103 block I/O traces
with different CPU/DRAM configurations and access pat-
terns. Each trace records the I/O requests from a VM for
around one week. Because 86% of the VMs had DRAM sizes
between 1 GB and 16 GB with a median of 3880 MB, we
performed evaluations at 1 GB, 4GB, and 16 GB cache sizes.
We present only 1 GB and 16 GB for space reasons. We
have also evaluated GL-Cache using 14 block I/O traces (we
ignore the traces which contain fewer than 5 million requests)
from Microsoft Research Cambridge (MSR) [73]. Because
the working set sizes of MSR traces exhibit a very wide range,
we set cache sizes for each trace at 0.01%, 0.1%, and 1%
of each trace’s footprint (size of all objects). Besides block
I/O request traces, we have also evaluated GL-Cache with
the Wikimedia CDN trace used in previous works such as
LRB [87] and LFO [10]. All the workload traces have at least
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Fig. 5: With oracle assistance, group eviction can achieve a similar
hit ratio improvement as object eviction.

three fields: the timestamp, id, and size of the requests.
We ran micro-implementation experiments on the Cloud-

lab [25] Utah site using m510 nodes with Intel Xeon D-1548
CPU, 64GB ECC DDR4 DRAM. And we ran prototype ex-
periments on the Cloudlab Clemson site using c6420 nodes
with Intel Xeon Gold 6142 CPU and 384 GB of DRAM.
Metrics. We replayed traces by reading and writing to a local
cache in a closed loop and measured hit ratio and throughput.
Because all traces are week-long traces, we started measure-
ments after finishing the first three days’ requests to make sure
the cache is properly warmed up under all the configurations
considered. We present evaluations using a one-day warmup
time in §4.6, which shows that the observations remain the
same as with a three-day warmup.

We report aggregated results from 103 CloudPhysics
traces and 14 MSR traces using box plots for the micro-
implementation results. Due to the diversity of the work-
loads, both hit ratio and throughput have wide ranges. Hence,
for ease of visual presentation, we report results compared
to FIFO using the following two metrics: hit ratio increase
over FIFO defined as HRalg−HRFIFO

HRFIFO
where HR stands for hit

ratio; throughput relative to FIFO defined as Ralg
RFIFO

where
R is the throughput. The box plots have the following for-
mat: the orange line inside the box is the median, the box
shows 25 and 75 percentiles, and the whiskers show 10 and
90 percentiles. Because several other factors in the prototype
systems (e.g., storage layout) affect efficiency and through-
put, for ease of understanding, we focus our evaluation on
the micro-implementation results. We present raw hit ratio
and throughput numbers using the prototype systems for one
representative trace in §4.3 and §4.4.

4.2 Group-based eviction
Group-level learning evicts most objects in the selected

groups. The bulk eviction may limit the efficiency of group-
level learning. To understand the limitation of group evic-
tion, we compare oracle-assisted group eviction with oracle-
assisted object eviction (size-aware Belady [11]). The oracle-
assisted group eviction uses the same design as GL-Cache
except using future request time to calculate group utility and
retain objects. Size-aware Belady evicts the object that has
the largest (Tnext −Tnow)× so where Tnext is the time of the
next request, and so is the object size.

We compare these two approaches using CloudPhysics
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Fig. 6: Prototype evaluation of a CloudPhysics trace.

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(a) CloudPhysics, small cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

1.0
Hi

t r
at

io
 in

cr
ea

se
 o

ve
r F

IF
O

(b) CloudPhysics, large cache
size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0

1

2

3

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(c) MSR, small cache size

LRU
Cacheus LHD LRB

GL-Cache-E

GL-Cache-T
0.0

0.2

0.4

0.6

0.8

Hi
t r

at
io

 in
cr

ea
se

 o
ve

r F
IF

O

(d) MSR, large cache size

Fig. 7: Hit ratio increase over FIFO. GL-Cache runs under two
modes, GL-Cache-E is the efficient mode, GL-Cache-T is the
throughput mode.

traces. Fig. 5 shows that group-based eviction can achieve
a hit ratio similar to object-based eviction at both small and
large cache sizes. The similar hit ratios suggest that group
eviction will not become the bottleneck for achieving high
efficiency. While the algorithms in this comparison use oracle
information, in the following sections, we show how GL-
Cache can use learning to replace the oracle and achieve high
cache efficiency.

4.3 Cache efficiency
We compare the efficiency of GL-Cache with state-

of-the-art designs in both the prototype and the micro-
implementation. Fig. 6a shows hit ratios for the prototype
running one CloudPhysics trace at different sizes. Compared
to other systems, GL-Cache consistently achieves the best ef-
ficiency, providing a significant hit ratio increase (up to 40%)
over the best of all baselines. Compared to Segcache, which
uses the same storage layout with FIFO-based group eviction,
group-level learning increases the hit ratio by 60% at 8 GB.
Cachelib uses a throughput-optimized LRU and has the low-
est hit ratio among all the baselines. LHD and TinyLFU use
two object features to make eviction decisions: LHD models
hit density based on age and size; TinyLFU uses frequency
to filter out unpopular objects and uses recency to evict ob-

jects. Leveraging more than one feature to choose eviction
candidates allows LHD and TinyLFU to achieve higher hit
ratios. However, not using more features puts an upper bound
on their potential. In comparison, GL-Cache evicts groups
based on seven features covering recency, frequency, cache,
and workload states at group creation time (miss ratio, write
rate, request rate). Considering multiple features in conjunc-
tion with learned importance allows GL-Cache to make better
eviction decisions and achieves a higher hit ratio. Evaluations
on the other traces show similar results.

To compare with more algorithms and on more traces,
we show hit ratio results from the micro-implementation on
CloudPhysics and MSR traces in Fig. 7. Because of the wide
range of hit ratios across traces, we show the relative hit ratio
increase compared to FIFO instead of the raw hit ratios. We
observe that both LRU and Cacheus improve FIFO’s hit ratio,
but only by a single-digit percentage for the median workload
on both datasets. Meanwhile, LRB, LHD, and GL-Cache
increase FIFO’s hit ratio more prominently.

Among LRB, LHD, and GL-Cache-E, LRB has the small-
est observed hit ratio improvement. We conjecture that learn-
ing at the object level receives limited information on each
object since cache workloads often follow Zipf distributions,
and thus is more challenging to learn compared to learning
at the group level. Compared to LHD, we observe that GL-
Cache-E shows similar efficiency on CloudPhysics traces.
However, on MSR traces, GL-Cache-E is more efficient than
LHD with a 60% hit ratio increase for a median workload
at the small size. This observation suggests that leveraging
more features to make eviction decisions can be very useful
for some workloads at certain cache configurations.

Compared to GL-Cache-E, GL-Cache-T trades hit ratio
for higher throughput (§4.4). However, we observe that GL-
Cache-T’s efficiency is still on-par with LRB. Overall, we
observe that GL-Cache improves the hit ratio by up to 37.8%
compared to LHD and 87% compared to LRB (not shown
in the figure). While LRB uses more features/information
than other eviction algorithms, it does not always provide the
highest hit ratio. More information leads to higher efficiency
only when the information is useful and well-utilized. We
conjecture that perhaps not all the features in LRB are useful,
and the model may not be making the best use of the features.

When comparing prototype and micro-implementation re-
sults, we observe that the hit ratio difference also depends on
the storage design. GL-Cache uses log-structured storage, and
the difference between prototype and micro-implementation
is smaller (<10%); LHD uses slab storage, and sometimes
the prototype can have a significantly lower hit ratio (>20%)
compared to the micro-implementation. This large differ-
ence comes from fragmentation and slab calcification prob-
lems [39, 105]. However, we did not find a way to efficiently
implement LHD on top of log-structured storage because it
requires the storage to have the capability of evicting (remov-
ing) any cached object, while log-structured storage can only



Table 4: Comparing LRB and GL-Cache-E on the Wikimedia trace
used in LRB paper [87]. We use miss ratio because it is more
commonly used in web caches.

Algorithm Miss ratio Throughput (MQPS)
Size (GB) 20 200 2000 20 200 2000
FIFO 0.39 0.16 0.025 7.62 7.91 9.68
LRB 0.24 0.048 0.016 0.01 0.04 0.07
GL-Cache-T 0.24 0.065 0.017 4.97 6.53 4.89
GL-Cache-E 0.20 0.041 0.013 2.55 3.91 4.20
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Fig. 8: Throughput relative to FIFO.

efficiently support sequential write and removal.
Besides block I/O cache traces, we have also evaluated GL-

Cache using the Wikimedia CDN trace from LRB evaluations.
Table 4 shows that learning helps LRB to achieve miss ratios
35% to 70% lower than FIFO. Compared to LRB, GL-Cache-
E further reduces the miss ratio by up to 16%. In summary,
the evaluations on three datasets totaled 118 traces illustrating
the high efficiency and generality of group-level learning.

4.4 Throughput and overheads
Not only does GL-Cache achieve a high hit ratio, but

GL-Cache also achieves high throughput. Fig. 6b shows
the throughput of GL-Cache in the prototype. We observe
that compared to production systems (Cachelib, Segcache),
GL-Cache achieves a similar throughput, indicating that GL-
Cache meets the throughput requirement of a production sys-
tem. Moreover, compared with eviction algorithms such as
LHD and TinyLFU, GL-Cache is 2-3× faster.

Besides the prototype evaluation, Fig. 8 compares the
throughput of GL-Cache with several state-of-the-art algo-
rithms evaluated on all CloudPhysics and MSR traces. While
LRU achieves throughput close to FIFO, all advanced evic-
tion algorithms exhibit a significant slowdown compared to
FIFO. However, among all learned caches, GL-Cache is sig-
nificantly faster than others. Compared to LRB, GL-Cache-E
has a 228× higher throughput, and GL-Cache-T has a 586×
higher throughput on average at the small cache size. Com-

pared to the fastest of all learned caches, GL-Cache-E is on
average 64% faster, and GL-Cache-T is on average 3× faster
at the small cache size. Similarly, on the Wikimedia trace
(Table 4), GL-Cache-E is tens to hundreds of times faster
than LRB and achieves almost half of FIFO’s throughput.

GL-Cache achieves high throughput because it needs very
few metadata updates on cache hits and misses. On a cache
hit, GL-Cache only needs to update the last access time and
group utility if it is on a sampled group (§3.5). On a cache
miss, GL-Cache does not need to update any metadata most
of the time; occasionally, it performs a group eviction and
evicts 100s to 1000s of objects. In contrast, other systems
must update multiple metadata entries on both cache hits and
cache misses. For example, TinyLFU needs to maintain the
frequency counting sketch and the LRU chain; LHD needs to
sample 32 objects, thus having 32 random DRAM accesses
for each eviction. Segcache is simpler than GL-Cache in per-
request operations. However, the lower hit ratio of Segcache
leads to its reduced throughput because of more evictions.

The second reason for GL-Cache’s high throughput is that
the overheads of training and inference are amortized. Be-
cause GL-Cache uses fewer features to learn simpler high-
level patterns instead of per-object access patterns, it uses a
simple model and is only retrained once a day. In our mea-
surement, each training consumes 10 - 50 ms of one CPU
core (not amortized by the number of training samples). In
addition, each inference consumes 0.4 - 3 ms of one CPU
core and is triggered every time 5% of ranked groups are
evicted. Because each inference evicts many groups and each
eviction evicts many objects, the inference computation is
amortized. The amortization is the key reason for GL-Cache’s
high throughput compared to other learned caches. Moreover,
although training and inference are not on the critical path of
request serving, our throughput evaluation measures run time
including both training and inference.

While throughput evaluations show the low computation
overhead of GL-Cache, machine learning in caching also
introduces storage overhead. First, GL-Cache uses DRAM
to store 8000 training samples. The training data storage
is pre-allocated and small (256 KB) compared to the cache
size (GBs). For deployments with very limited memory, the
training data can also be stored on the storage device. Second,
each object group in GL-Cache uses 28 bytes of features —
each object thus adds less than one byte. Besides the group-
level features, GL-Cache tracks each object’s last access time
using 4 bytes. In total, GL-Cache uses 5 bytes of object
metadata for eviction. As a comparison, LRU requires two
pointers with 16 bytes of metadata per object, and LRB uses
192 bytes of features per object.

4.5 Understanding GL-Cache’s efficiency
So far we have demonstrated that GL-Cache has a higher

miss ratio and throughput than existing systems. While amor-
tized overhead explains the high throughput, this section ex-
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Fig. 9: Feature case study.

plores how learning helps GL-Cache achieve high efficiency.
Most eviction algorithms use one or two object features

to decide which object to evict. For example, LRU evicts
the object with the largest access age (recency), LeCaR and
Hyperbolic [15] use recency and frequency to make eviction
decisions, LHD relies on access age and object size to choose
eviction candidates. In contrast, object-level learned cache
such as LRB uses 44 features covering different measure-
ments of recency and frequency, as well as object size, to
compare objects. Similarly, GL-Cache uses seven features
to compare object groups. To better understand GL-Cache’s
efficiency, we examine how GL-Cache uses these features.

We obtained the feature importance score directly from
XGBoost. The importance score is calculated using the num-
ber of times a feature is used to split the data across all trees
and may not represent the ground truth. Fig. 9a shows the nor-
malized feature importance scores of different features across
traces obtained from the models trained for each trace. We
observe that across traces, frequency and age have relatively
high scores with medians of around 0.3. This aligns well with
existing literature on eviction algorithms, which mostly use
recency and frequency to make eviction decisions. The next
important feature is the mean object size, which is essential
for algorithms that consider variable-size objects. Besides
these features, the workload and cache states (request rate,
miss ratio, write rate) at the group creation time have similar
scores with a median of around 0.05. When summed up, they
have a similar importance as the object size.

While we observe that the most commonly used features
(recency, frequency, size) are critical, we also observe that no
feature is dominant across all traces. Fig. 9b shows the feature
importance score for 12 randomly selected traces. For some
traces, frequency is more important, with an importance score
of 0.6. For others, recency or size is more important. GL-
Cache weighing features differently across traces suggests
that GL-Cache can effectively adapt the feature importance
to each workload. For comparison, the algorithms leveraging
more than one feature often combine the features in a way that
cannot adapt to workloads. For example, Hyperbolic scores
an object using f requency

age , leaving the relative importance of
frequency and age unchanged across workloads.

Fig. 9c uses one trace to illustrate the importance of GL-
Cache adaptively using multiple features. It shows how grad-
ually including more features improves the hit ratio. We
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Fig. 10: Impact of group size.

observe that the combination of frequency, recency, and size
at small sizes (1 GB and 4 GB) leads to a large hit ratio in-
crease (e.g., 80% at 1 GB). Meanwhile, frequency alone is
insufficient and can only increase the hit ratio by 10% at 1
GB. Using all features increases the hit ratio modestly on this
trace compared to only using frequency, age, and size. More-
over, Fig. 9c shows that feature importance could change with
cache sizes. Object size is more important at 1 GB cache
size, while frequency becomes more important than other
features at 16 GB. This could be because small objects con-
tribute more hits per consumed byte than large objects, so
caching small objects is better when the cache size is small.
Meanwhile, when most small objects are cached at a larger
cache size, choosing between large objects depends on re-
quest frequency. This observation suggests that in GL-Cache,
the choice and use of features adapt not only to the workloads
but also to different configurations such as cache sizes.

In summary, learning at the group level can leverage mul-
tiple features to adapt to both workload and cache sizes, en-
abling higher cache efficiency.

4.6 Sensitivity analysis
We have discussed the three parameters used by GL-Cache

in §3.7, and we have shown the two modes of GL-Cache:
one achieves higher efficiency (GL-Cache-E), and the other
achieves higher throughput (GL-Cache-T). This section
shows in detail how these parameters affect hit ratio and
throughput. In addition, we show that the warmup time does
not significantly change the hit ratios.
Group size. A smaller group indicates a finer granularity
for learning and evictions. Varying group size affects both
throughput and efficiency. First, reducing group size increases
storage and computation overhead due to finer learning gran-
ularity. As a result, throughput increases with group size,
as shown in Fig. 10. Second, the hit ratio increases when
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Fig. 11: Impact of eviction fraction Feviction.
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Fig. 12: Impact of the number of groups to merge at each eviction.

the group size increases from 1 (object-level learning) to 20,
then decreases as the group size further increases from 60
to 1600. A smaller group indicates that each eviction evicts
fewer objects, enabling a higher hit ratio. However, when
the group size is too small, each group gets too few requests
for group feature learning to be effective, thus decreasing
the hit ratio. The non-monotonic hit ratio change (hit ratio
first increases then decreases) also explains why object-level
learning achieves a lower hit ratio than GL-Cache.
Eviction Fraction. GL-Cache evicts Feviction fraction of
ranked groups between each inference to reduce computa-
tion overhead and better tolerate inaccurate predictions. The
more groups (larger Feviction) evicted per inference, the fewer
inferences, thus higher throughput. However, a larger Feviction
means more (useful) groups are evicted after each inference,
resulting in a lower hit ratio. Fig. 11 shows that increasing
Feviction reduces hit ratio and increases throughput.
Number of groups to merge. The last tunable parameter in
GL-Cache is the number of groups to merge at each eviction.
Because GL-Cache evicts the majority of the objects on the
Nmerge groups and retains one group worth of objects, merging
more groups means that GL-Cache retains fewer objects from
each group. Retaining fewer objects reduces the computation
needed at each eviction, but it also reduces efficiency. Fig. 12
shows that increasing the number of merged groups increases
throughput and reduces the hit ratio.

Besides the above three parameters, the learning compo-
nent also introduces several parameters such as training data
size and retraining frequency. GL-Cache retrains the model
once a day because many events (such as cron jobs and diurnal
patterns) happen on a daily basis. Wall clock time sometimes
is more important than virtual time (reference count), and
has also been recognized by researchers from Google when
they use neural networks to predict the lifetime of a memory
allocation [64]. The retraining interval affects both efficiency
and performance. Note that more frequent retraining does
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Fig. 13: A spectrum of GL-Caches allow users to tradeoff between
hit ratio and throughput.

not always lead to a higher hit ratio because shorter retrain-
ing intervals reduce the accuracy of the group utilities used
for training as they are accumulated over time. We observe
that the best retraining interval depends on the workload —
some workloads show higher hit ratios with half-day retrain-
ing, and some others benefit from two-day retraining. While
fine-tuning retraining intervals can improve the hit ratio by
up to 10%, one-day retraining achieves a good performance
across workloads as shown. Besides training frequency, an-
other parameter in training is the number of training samples.
Because GL-Cache learns high-level access patterns, which
we conjecture is easier to learn than per-object behavior, GL-
Cache does not require a large amount of training data. While
we cannot prove that 8000 training samples are sufficient for
all workloads under all scenarios, we find that it is sufficient
for the diverse traces in our evaluation.

The sensitivity analysis shows that GL-Cache is relatively
robust to parameter changes. The parameters of GL-Cache-E
and GL-Cache-T were chosen based on evaluations of 10
random traces. Our results show that these two sets of pa-
rameters work well across the diverse traces in the evaluation.
However, like in any other system, a general set of parame-
ters provides reasonable performance but does not guarantee
the best performance. Per-workload fine-tuning can poten-
tially provide larger benefits. GL-Cache provides the oppor-
tunity for users to explore the trade-off between efficiency
and throughput. Fig. 13 shows the throughput and hit ratio
of GL-Cache compared to baselines (we do not plot multiple
close-by points of GL-Cache for clarity). In both prototype
and micro-implementation evaluations, GL-Cache achieves
higher throughput than systems with a similar hit ratio or a
higher hit ratio than systems with a similar throughput. De-
ployments with less computation power can use GL-Cache in
a high-throughput mode with a slightly lower hit ratio. And
deployments that are less sensitive to computation may use
GL-Cache to achieve a higher hit ratio.

Our evaluation so far used a warmup time of three days to
make sure the cache is warmed up for any trace under any
size. We have also evaluated with a one-day warmup time and
presented the results in Fig. 14. We observe that although the
absolute values exhibit some differences, the overall trends
on hit ratio increase are similar when compared to using a
three-day warmup time (Fig. 7). In addition to the hit ratio
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Fig. 14: Using one-day warmup, evaluated on CloudPhysics traces.

results, throughput results using a one-day warmup are also
similar to that of a three-day warmup. Similarly, evaluations
on the MSR and Wikimedia traces also exhibit little difference
between using one-day and three-day warmup times.

5 Related work
The study of cache designs has a long history with the ma-

jority of works focusing on improving cache efficiency. With
increasing complexity in cache management, many recent
works have also improved the throughput and scalability.
Better eviction algorithms. Most works improving cache
efficiency focus on cache eviction algorithms, especially how
to define and use recency, frequency, and size to make better
eviction decisions. For example, ARC [69] uses two LRU
lists to balance between recency and frequency; CAR [6],
LIRS [43, 44, 57, 108], Clock-pro [42], 2Q [85], SLRU [41],
LRU-K [76] use a different metric to measure recency; vari-
ants of LFU [4, 48], LRFU [56], tinyLFU [26–28] and hy-
perbolic [15] use a combination of frequency and recency to
make evictions; various greedy-dual algorithms [17,20,45,59]
use two metrics (e.g., frequency and size) to choose eviction
candidates. In addition, several learned caches have been
designed in the past few years, as discussed in detail in §2.2.
Compared to existing learned caches, GL-Cache employs
group-level learning, which amortizes overheads and accu-
mulates stronger learning signals to make better eviction de-
cisions. Moreover, existing learning approaches to caching
cannot be directly applied to group-level learning due to chal-
lenges such as comparing object groups’ usefulness.
Improve cache throughput. Most algorithms that improve
efficiency trade throughput for higher efficiency. With in-
creasing complexity in cache systems, throughput and scal-
ability become critical. MICA [62] uses a holistic design
with a lossy hash table and partitioned log-structured DRAM
storage to achieve high throughput and scalability; Seg-
cache [105] uses an approximate-TTL-indexed segment-chain
with batched eviction to achieve high throughput and scal-
ability; MemC3 [30] uses a cuckoo hash table and Clock
eviction to improve scalability; Cachelib [9] reduces LRU
promotion frequency to improve scalability. These systems
often use weaker eviction algorithms such as FIFO, Clock, or
weak LRU. Compared to these works, GL-Cache improves
efficiency without sacrificing throughput. Specifically, GL-
Cache and Segcache share some design aspects such as object
grouping. However, Segcache primarily innovates on the de-

sign of storage layout for key-value caches, and it uses FIFO
for eviction. Instead, GL-Cache focuses on using learning for
evictions, which is the key to GL-Cache’s efficiency gains.
Use of machine learning to improve system efficiency. Ma-
chine learning has seen increasing use to improve system
efficiency. For example, Google uses machine learning to
improve the efficiency of data center operations [33]. Mi-
crosoft uses machine learning to improve database query
optimizer [46]. Prior works have designed learned com-
ponents to replace various parts of a system, such as in-
dex [23, 50, 54, 55, 74, 97] and query optimizer [66, 67] in
databases, straggler mitigation in inference systems [52, 53],
and FTL for SSD [89]. Moreover, many other works look into
automatic database tuning using machine learning [60,91]. In
caching, in addition to the three categories of learned cache
evictions that we have discussed in §2, recent works have
also looked into using sub-sampling to reduce learned cache’s
time horizon [95], using machine learning to predict memory
access [37], designing cache admission [35, 51], designing
cache prefetching [61, 61, 88, 102] predicting hot records in
LSM-Tree storage [106], using deep recurrent neural network
models for content caching [72], using Markov cache model
for size-aware cache admission policy [13]. Compared to
these works, GL-Cache is the first system to perform learning
on a group of entities and navigates efficiency-throughput
trade-off using coarse-grained learning granularity.

6 Conclusion
We propose a new approach for using machine learning to

improve cache efficiency: group-level learning. Group-level
learning predicts and evicts the least useful object groups.
Group-level learning leverages multiple object-group features
to adapt to workload and cache size, accumulates stronger
signals for learning, and amortizes learning overheads over
objects. As a result, it makes better eviction decisions with
a tiny overhead. We build GL-Cache in a production cache
to demonstrate group-level learning and evaluate it on 118
production block I/O and CDN traces. GL-Cache achieves
a significantly higher throughput as compared to all other
learned caches while retaining a higher hit ratio. Thus, GL-
Cache paves the way for the adoption of learned caches in
production systems.
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