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Abstract. Large-scale N-body simulations play an important role in advancing
our understanding of the formation and evolution of large structures in the uni-
verse. These computations require a large number of particles, in the order of
10-100 of billions, to realistically model phenomena such as the formation of
galaxies. Among these particles, black holes play a dominant role on the forma-
tion of these structure. The properties of the black holes need to be assembled in
merger tree histories to model the process where two or more black holes merge
to form a larger one. In the past, these analyses have been carried out with cus-
tom approaches that no longer scale to the size of black hole datasets produced by
current cosmological simulations. We present algorithms and strategies to store,
in relational databases (RDBMS), a forest of black hole merger trees. We imple-
mented this approach and present results with datasets containing 0.5 billion time
series records belonging to over 2 million black holes. We demonstrate that this
is a feasible approach to support interactive analysis and enables flexible explo-
ration of black hole forest datasets.

1 Introduction

The analysis of simulation-produced black hole datasets is vital to advance our under-
standing of the effect that black holes have in the formation and evolution of large-scale
structures in the universe. Increasingly larger and more detailed cosmological simula-
tions are being used to gain insight on the evolution of massive black holes (Sec. 2).
The simulations store the data in a format that is not readily searchable or easy to ana-
lyze. Purpose-specific custom tools have often been preferred over standard relational
database management systems (RDBMS) for the analysis of datasets in computational
sciences (Sec. 3). The assumption has been that the overhead incurred by the database
will be prohibitive. Previous studies of black holes have used custom tools. However,
this approach is inflexible as these tools often need to be re-developed for carrying out
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new studies and answering new questions. As part of our goal of reducing the time
to science, we developed an approach that leverages RDBMS to analyze black hole
datasets (Sec. 4). This approach enables fast, easy and flexible data analysis. A major
benefit of the database approach is that now the astrophysicists are able to interactively
ask ad-hoc questions about the data and test hypotheses by writing relatively simple
queries and processing scripts. We present: (1) A set of algorithms and approaches
for processing, building and querying black hole merger tree datasets. (2) A compact
database representation of the merger trees. (3) An evaluation of the feasibility and rel-
ative performance of the presented approaches. Our evaluation (Sec. 5) shows that it is
feasible to support the analysis of current black hole datasets using a database approach.
An extended version of the results presented here is also available [13].

2 Motivation: Black Holes and the Structures in the Universe

Black holes play an important role in the process by which structures, such as galaxies,
are organized in the universe. To understand these phenomena, large-scale cosmological
numerical simulations are used. They cover a vast dynamic range of spatial and time
scales with an extremely large number of particles, in excess of 1010 in principle.
Black Hole Datasets. The simulations produce three types of datasets: snapshots, group
membership and black holes. Snapshots contain complete information for all the parti-
cles in the simulation at a given time step. In recent simulations, snapshots require close
to 100 TB of storage. The group files contain the membership of particles to groups,
such as dark matter halos. The black hole files contain the black hole data with high
temporal resolution. They contain two main types of records. (1) Black hole property
records contain the id, simulation time, mass, and other properties. (2) Merger events
records indicate when a pair of black holes merge with one another and contain the
ids and masses of the two black holes, as well as the time when the event occurred. A
black hole merger tree comprises the set of merger event records along with the detailed
property records for the black holes involved in the mergers.

Eddington

Fig. 1. Sample black holes. This figure shows the gas distribution around two large black holes
and their respective light curves and accretion rate history for the most massive one.

Analysis of Black Hole Datasets. Recent observations imply that black holes with bil-
lion solar masses are already assembled when the universe is only 800 million years old.
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An objective of the analyses of simulation-generated black hole datasets is to explain
the formation of these objects. There are two types of analyses we want to perform on
black hole datasets. The first type requires queries based on a specific redshift (i.e., sim-
ulation time), often selecting a subset according to their mass and growth rate. These
analyses aim to characterize the properties of black hole properties that exist at a spe-
cific time, including the number and density of black holes as a function of mass [6] or
luminosity [4], how they cluster and the correlation between black holes and the galax-
ies in which they are found [3,6,5]. The second type of analyses requires processing the
detailed growth history of individual black holes. An example is shown in Fig. 1. These
histories help us understand how black holes grow, the relative importance of black hole
mergers vs. gas accretion.

3 Background and Related Work

Database techniques have been adopted to manage and analyze datasets in a variety of
science fields such as medical imaging [2], bioinformatics [15] and seismology [16].
In astronomy, RDBMS have been used to manage the catalogs of digital telescope sky
surveys such as the Sloan Sky Digital Survey (SSDS) [1,9]. Database techniques have
been used in observational astronomy to perform anomaly detection [10] among oth-
ers, and data-intensive approaches have been used for spatial clustering [7,11]. RDBMS
have not been as widely used for the analysis of cosmological simulations, in part due to
the challenge posed by the massive multi-terabyte datasets generated by these simula-
tions. The German Astrophysical Virtual Observatory (GAVO) has led in this aspect by
storing the Millenium Run dataset in an RDBMS and enabling queries to the database
through a web interface [12]. GAVO researchers proposed a database representation for
querying the merger trees of galactic halos. We are using RDBMS to support interac-
tive analysis of cosmological simulation datasets. We present techniques for building
and querying the merger trees of black holes, along with a compact database represen-
tation for these trees.

4 Building and Querying Black Forest Databases

Database Design. To support the queries needed for the analysis of BH datasets, we
transform the the simulation output into RDBMS tables. The database comprises two
main tables as shown in Fig. 2: BlackHoles (BH), MergerEvents (ME). Querying this
database consists of two steps: (1) building the merger tree from the ME table to obtain
the ids of the black holes in the tree; (2) querying the BH table to retrieve the associated
history for the black holes. The input for a query is the id of a black hole of interest
(qbhid). The desired output for step 1 is the ids of all the black holes in the same
merger tree as qbhid. Notice that the ME records do not have explicit links to other ME
records that belong to the same merger tree. The approaches for building and querying
the merger trees are presented below.

Approach 1: Recursive DB Queries. Given a qbhid, this approach finds the root of the
tree by repeatedly querying the ME table. Once the root is found, it recursively queries
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Fig. 2. (a) Black hole merger tree. Leaf nodes (at the top) correspond to black holes. Interior
nodes correspond to black holes that merge. (b) DB representation: only the interior nodes of
the tree, i.e., merger events, are stored, the dashed circles, corresponding to the leaf nodes, are
not explicitly stored. (c) Basic schema for main tables in the black holes database: mergerevents
(ME) and blackholes (BH).

the ME table for each of the root’s children (left, right) as shown in the BuildTree
procedure. This simple approach works well when only a small number of merger trees
are being queried and the resulting trees have few records.

Procedure BuildTree(bhroot, ctime): Recursively build a merger tree rooted at bhroot

// Find all the records that have the bh1 field = bhroot
1 type TreeNode {id, time, left, right }
2 TreeNode node = NULL, pnode = NULL
3 qresult = SELECT bh2, time FROM ME WHERE bh1 = bhroot AND time ≤ ctime

ORDER BY time DESC
4 for (bh2, time) in qresult do
5 node = new TreeNode(id, time)
6 node.right = BuildTree(bh2, time)
7 if pnode is not null then
8 pnode.left = node // set left child for previous node in the result

9 pnode = node

10 return node // node is the latest event (tree root), it may be null

Approach 2: In-Memory Queries. This approach consists in using a single database
query for loading all the records from the ME table into a set in memory (MESet) and
then looking up in MESet the events that belong to a tree. The algorithm is the following.
Given a query qbhid, add it to a queue pq of pending black holes. For each element bh
in the queue, fetch from MESet the records that match bh (i.e., r.bh1 = bh). For each
matching record r, add the corresponding r.bh2 to the pq queue. Repeat this process
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until every element of pq has been processed (i.e., the end of the queue is reached). At
the end of the procedure, pq contains the ids belonging to the corresponding tree.

Approach 3: In-Memory Forest Queries. This approach builds on the previous one.
The basic idea is to build all the merger trees in the dataset with a single scan of the ME
table, instead of building a single tree as in the previous approach. This approach incurs
extra work to build all the trees. However, this cost is amortized when a large number of
queries need to be processed. This approach is based on the Union-Find algorithm [8]
and adjusted to handle the peculiarities of the merger events representation. The process
is described in the procedure BuildForestInMemory.

Procedure BuildForestInMemory(db)
input : DB with the ME table
output : A forest containing all the merge trees in ME

1 cursor = SELECT bh1, bh2, time FROM ME // Scan over all ME records
2 for (bh1, bh2, time) in cursor do
3 node = new TreeNode(bh1, time, bh2)
4 bh2Map.put(bh2, node) // Map from bh2 to this node
5 bh1Map.addToList(bh1, node) // Map from bh1 to a node list

6 for node in bh2Map do
7 node.right = bh1Map.get(node.bh2) // Create link for right-side child, it may be null

8 forest = emptySet()
9 for lst in bh1Map do

10 sortbytime(lst)
11 createLinkOnBh1(lst) // Create links from lst[n-1].left to lst[n]
12 findRootAndAddToForest(lst, forest)

13 return (forest, bh1Map, bh2Map)

Approach 4: ForestDB. The ForestDB approach builds on the techniques used in the
In-Memory Forest approach. The basic idea is to build the black hole forest in the same
way as in the in-memory case. Then tag each tree with an identifier (tid). The forest can
be written back into a table in the database that we will call merger events forest (MF).
This is done as a one-time pre-processing step. The schema for this table is the same as
the ME’s schema (see Fig. 2), with the addition of the tid field. Two conceptual steps
are performed at query time to extract a merger tree for a given qbhid. First, search the
MF table for a record matching qbhid. The tid field can be obtained from the record
found in this step. Second, retrieve from the MF table all the records that have the same
tid. These two steps can be combined in a single SQL query. Moreover, the detailed
history for the black holes in the tree can be retrieved from the BH table using a single
query that uses tid as the selection criteria and joins the MF and BH tables. Indices on
the bh1, bh2 and tid fields are required to speed up these queries. Alternatively, the
indices on bh1 and bh2 can be replaced by an additional auxiliary indexed table to map
from bhid to tid.
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The MF table only stores the membership of the merger event records to a particular
tree. Notice that the MF table does not explicitly store the tree structure, i.e., the parent-
child relationships. Also, the MF table only stores the internal nodes of the merger tree.
The leaves are not explicitly stored. Instead the relevant data (such as the leaf’s bhid)
is stored in the parent node. This makes for a more compact representation as it requires
fewer records in the MF table.

5 Evaluation

We implemented the approaches described above using Python and SQLite. Our evalu-
ation aims to characterize the relative performance of these approaches and determine
the feasibility of using RDBMSs in the analysis of black holes datasets. For this pur-
pose, we ran a set of experiments using a dataset produced by the largest published
cosmology simulation to date.
Workload. The dataset was produced by a cosmological simulation using the GADGET-
3 [14] parallel program. The simulation contained 66 billion particles. At the end of
the simulation, there are 2.4 million black holes. The size of the resulting black holes
dataset is 84 GB. The black hole history table contains 420 million records correspond-
ing to 3.4 million unique black holes and 1 million merge events. Figure 3 shows the
distribution of tree sizes in number of merger events in the ME table. The storage re-
quirements for the tables and associated indexes is shown in the table in Figure 3.
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Fig. 3. Left: Distribution of tree sizes in the black holes dataset. The X axis is the size of a merger
tree measured as the number of events in a tree. The Y axis is the number of trees of that size in
log10 scale. Right: Sizes of tables and indexes in the BH database.

Performance. To characterize the performance of the developed approaches, we con-
ducted a series of micro benchmark experiments that correspond to the steps involved in
answering queries for the detailed time history of merger trees. The experiments were
run on a server host with 2 GHz CPUs, 24 GB of memory and a SATA disk.

Building Merger Trees. The first set of micro benchmark experiments corresponds to
the steps needed to build the merger trees for a set of query black holes (qbhs). We
compared three of the approaches explained in Sec. 4: (a) Recursive DB – RDB, (b) In-
memory – IM, and (c) Forest DB – FDB. The In-memory Forest approach was only used
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to build the tables for FDB. For these experiments we selected black holes (qbhs) that
belonged to merger trees in the ME table. We timed the process of satisfying a request
to build one or more merger trees specified by the requested qbhs. The processing time
includes the time required to issue and execute the database query, retrieve and post-
process the result to build the trees.
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Fig. 4. Running time to obtain the merger trees for the different approaches. These results corre-
spond to a tree of size 5. The X axis is the number of trees being queried at once in a batch. The
Y axis is the elapsed time in seconds (log scale) to retrieve the corresponding records from the
ME table. The cases with cold (a) and warm (b) OS caches are shown.

In the first experiment, we kept the tree size fixed at 5 and varied the number of
black holes for which a tree is requested (number of qbhs). The results for the different
approaches are shown in Fig. 4. The X axis is the qbh count varying from 1 to 10K. The
Y axis shows the processing time (seconds) in log scale. For qbh counts less than 1K,
both the RDB and FDB approaches are faster than the In-Memory approach. The RDB
approach is not as expensive as we originally thought for small queries, either in the
number of qbhs or the requested tree size. It was surprising to find out that for the cold
OS cache setup (Fig. 4a), the processing time for RDB and FDB does not differ sig-
nificantly. For the warm OS cache, there is a (constant in log scale) difference between
RDB and FDB. The IM approach pays upfront a relatively large cost of 15 seconds to
load the entire ME table, then the processing cost per requested qbh is negligible, and
thus can be amortized for a large number of qbhs.

Figure 5 shows the effect of the merger tree size on the request processing time.
In this experiment the requests were grouped by tree sizes (X axis = 1, 5, 10, 15, 20).
This experiment was performed with a warm OS cache and cold database cache. The
initial load time for the IM approach is not included in the processing time shown in
the graphs, only the time to build the tree in memory. The running time for the RDB
approach increases as the trees get larger. This is due to the larger number of queries to
the ME table needed to process each tree in the recursive approach. The FDB approach
requires a single query to the ME table per requested tree.

Retrieving the Time History for Merger Trees. In the second set of experiments, we
retrieved the detailed time history for a set of trees retrieved in the previous step. This
entails retrieving from the BH table all the records for the corresponding BH in a given
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Fig. 5. Processing time for building the merger trees using various approaches. This experiment
was performed with a warm OS cache and a cold DB cache. The X axis is the size of the resulting
tree; (a) and (b) show the time to process 250 qbhs and 2 qbhs per request respectively. The Y
axis is the elapsed time to build the number of trees of each size.

merger tree. For each tree size (1, 5, 10, 15), we retrieved the BH histories for 100 trees
of that size. Figure 6a shows the elapsed time in seconds to retrieve the detail records
from the BH table. The times are shown for an unsorted indexed BH table and a BH
table sorted by the black hole id. As expected for this query pattern, sorting by the BH
id is beneficial. Figure 6b shows the elapsed time according to the number of records
that were retrieved from the BH table. Each data point corresponds to a merger tree that
resulted in retrieving the number of BH records shown in the X axis. The Y axis is the
elapsed time in seconds for the unsorted and sorted BH tables.
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Fig. 6. Time to retrieve the detail BH history from the BH table for merger trees of various sizes.
The running times for queries to sorted and unsorted BH tables are shown. Figure (a) shows the
elapsed time grouped by tree size. Figure (b) shows the same data grouped by the number of BH
records comprising the merger trees.

6 Conclusion

Rapid, flexible analysis of black hole datasets is key to enable advances in astrophysics.
We presented a set of algorithms for processing these data using a database approach.
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The database approach is not only flexible, but also exhibits good performance to sup-
port interactive analysis.
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