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Abstract

DiscFinder is a scalable, distributed, data-intensive group finder for analyzing observation and
simulation astrophysics datasets. Group finding is a form of clustering used in astrophysics for
identifying large-scale structures such as clusters and superclusters of galaxies. DiscFinder runs
on commodity compute clusters and scales to large datasets with billions of particles. It is designed
to operate on datasets that are much larger than the aggregate memory available in the computers
where it executes. As a proof-of-concept, we have implemented DiscFinder as an application on
top of the Hadoop framework. DiscFinder has been used to cluster the largest open-science cosmol-
ogy simulation datasets containing as many as 14.7 billion particles. We evaluate its performance
and scaling properties and describe the performed optimization.






1 Introduction

Today, the generation of new knowledge in data-driven sciences, such as astrophysics, seismology
and bio-informatics, is enabled by the processing of massive simulation-generated and sensor-
collected datasets. The advance of many fields of science is increasingly dependent on the analysis
of these necessarily much larger datasets. For example, high-resolution cosmological simulations
and large sky surveys are essential in astrophysics for answering questions about the nature of
dark energy and dark matter (DE&DM) and the formation of large-scale structures in the universe.
The analysis of these datasets becomes extremely challenging as their size grows. They become
too large to fit in the aggregate memory of the computers available to process them. Enabling the
scaling of science analytics to these much larger datasets requires new data-intensive approaches.

Frameworks, such as Hadoop and Dryad, are commonly used for data-intensive applications
on Internet-scale datasets. These applications include text analysis, natural language processing,
indexing the web graph, mining social networks and other machine learning applications. The
natural question is then: Can we leverage these data-intensive frameworks for science analytics?
In this work, we want to understand the requirements for developing new algorithms to enable
science analytics using these systems. In the process, we should understand the advantages and
limitations of these frameworks and how they should be enhanced or extended to better support
analytics for science.

As part of our collaboration with domain scientists, we have developed DiscFinder: a new
data-intensive distributed approach for finding clusters in large particle datasets. Group finding is
a technique commonly used in astrophysics for studying the distribution of mass in the universe
and its relation to DE&DM. DiscFinder is complementary to other existing group finding meth-
ods and is particularly useful for processing very large datasets on commodity compute clusters
even in the case where the available aggregate memory cannot hold the entire dataset. Although,
the mechanisms described here are specific to group finders for astrophysics, the principles are
generally applicable to clustering problems in other fields of science.

DiscFinder is scalable and flexible. DiscFinder scales up to process datasets with tens of bil-
lions of particles. It has been used to find clusters in the largest open-science simulation datasets.
The DiscFinder design is compact and conceptually simple. The approach used in DiscFinder
leverages sequential group finder implementations, which are employed for clustering relatively
small subsets of the input particles. The main idea is to group and partition the input particle
dataset into regions of space, then execute a sequential group finder for each partition, and finally
merge the results together in order to join the clusters that span across partitions. The sequen-
tial finders are independently executed on relatively small subsets of the input in order to keep
their running time low. The approach is implemented as a series of jobs on top of the Hadoop
framework. DiscFinder relies on Hadoop for splitting the input data, managing and coordinating
the execution of tasks and handling task failures. Finally, the DiscFinder strategy is flexible in
the sense that it allows multiple implementation of the sequential group finder to be used. Dis-
cFinder distributes the execution of the sequential finder in order to scale to large datasets. This
strategy reduces the overall implementation complexity and benefits from the effort invested in the
development of the sequential finders.

We are interested in determining the feasibility of the DiscFinder design and understanding its
performance characteristics. In our evaluation, we first characterize the DiscFinder scalability with
respect to the data size and find that it is possible to cluster very large datasets with this approach.



2. MOTIVATING APPLICATION

The main benefits of DiscFinder and future analysis applications implemented using similar
approaches are their simplicity and potentially shorter development time. However, the simplic-
ity of the implementation comes at a performance cost. We characterize the DiscFinder running
time and apply a set of modifications to the implementation to improve its performance. There is
clearly room for improvement both at the application and framework levels. We discuss various
potential optimizations that can provide additional performance benefits. As the performance of
these frameworks improves, they will be more widely used in data analytics for science.

The rest of this paper is structured as follows: Section 2 describes the motivating application;
Section 3 summarizes previous related work; the DiscFinder design is explained in Section 4; the
implementation details are presented in Section 5; Section 6 presents the performance evaluation
of the approach.

2 Motivating Application

Analysis of Astronomical Datasets. Domain scientists are now commonly faced with the chal-
lenge of analyzing massive amounts of data in order to conduct their research. In particular, ever
increasing large observation and simulations datasets abound in astrophysics. The advent of digital
sky surveys, beginning with the Sloan Digital Sky Survey (SDSS), increased dramatically the scope
and size of astronomical observational datasets [1]. The latest SDSS data release was over 30 TB
in size. The field is moving towards large time domain astronomy surveys, such as Pan-STARRS
[29, 23] and LSST [22], which will store many time slices of data. Pan-STARRS is producing in
the order of 1TB/day of imagery. Both Pan-STARRS and LSST are projected to produce multi-TB
datasets over the lifetime of the surveys. Similarly, state-of-the-art N-body cosmological simula-
tion, such as the Bigben BHCosmo and Kraken DM simulations [9] produce multi-billion particle
datasets with sizes in the orders of tens of terabytes, even after aggressive temporal sub-sampling.
This down-sampling is needed to deal with the bandwidth and capacity limits of the storage system
available in the supercomputers where these simulations execute.

The analysis of these datasets is essential for tackling key problems in astrophysics, such as
the understanding the nature of dark energy (DE) and dark matter (DM), and how DE&DM con-
trols the formation of large-scale structures in the universe [5], such as clusters and superclusters
of galaxies. In order to better understand the role of DE&DM in the evolution of the universe,
theoretical and observational astrophysicists analyze the aggregate properties of large-scale struc-
tures, such as the distribution of their size, volume and mass [40]. Finding the groups of particles
that make up the large-scale structures is the first step towards carrying out this process. Once
the groups have been identified, then their properties can be calculated and the groups can be
decomposed into sub-halos for further analysis [33, 6, 10, 32, 19]

Group Finding. In astrophysics, group finding refers to a family of physics-based spatial cluster-
ing problems applied both to observation and simulation datasets. Their input is a set of celestial
objects such as stars, galaxies, gas, dark matter, etc. We will refer to those as particles, points or
objects. A group finder separates the particles into groups that make up larger structures such as
galaxies and clusters of galaxies. In very loose terms, we will refer to those structures as groups
or clusters interchangeably. In slightly more formal terms, a group finder takes an input set of
particles P = {po, p1,p2,-.-,Pn—1} and produces a set of m disjoint groups G = {Goy,...,Gm—_1}
such that each group G; comprises the subset of points from P (i.e., VG; € G: G; C P and VG; €
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2. MOTIVATING APPLICATION

G,YGj € G,i# j: GiNG; = 0). The criteria for determining the membership of a particle to a
group may use physics-based computations that take into account particle properties such as po-
sition, mass and velocity. There are many variants of group finding approaches, both from the
algorithmic point of view as well as the criteria used for the selection.

Friends-of-Friends (FOF). FOF is a simple algorithm proposed by Huchra and Geller to study
the properties of groups of galaxies in observation surveys [7, 21]. Its group membership criteria is
solely based on the Euclidean inter-particle distance. FOF is widely used and works in practice for
many analysis scenarios. There are a large number of more sophisticated group finding approaches
that are based on FOF.

FOF is driven by two parameters: a linking length (t) and a minimum group size (minGz). The
input is the set of particles P, in particular each particle is a tuple of the form (pid;, (xi,yi,2)),
where pid is the particle identifier and x;, y;,z; are the particle’s position coordinates in 3D space.
The only group membership criteria is the following: two particles p; and p; belong to the same
group G; (are friends), if the distance between them (d;;) is less than t. This procedure is illustrated
in two dimensions in Figure 1. Any other particle p; also belongs to the group Gy, if the distance
between py and any of the particles in Gy is less than T. After applying this criteria, all the friends
of p; become friends of p; and vice versa, hence the name of the approach. The output set G
comprises the groups that contain a number of points larger that the minGz parameter. The output
is represented as a list of tuples of the form (pid,groupId) where groupId is the group identifier.

%
Groups __ pg p Pg
\'*:?rsa
*
P2 "3
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» o *p7

Figure 1: Friends of Friends (FOF) clustering. This dataset contains 8 particles py,...,ps. Shaded
regions denote groups of particles. Notice that particles p3 and pg belong to the same group although
they are not close enough to each other. The reason is that they are indirectly linked through their friends,
particles p4 and ps. In this example, minGz = 2, thus particles p; and pg do not belong to any group.

There are available sequential implementations of the FOF algorithm, such as the one from the
“N-body shop” at the University of Washington [37]. These implementations rely on building a
spatial indexing structure, such as a kd-tree, to speed up lookups to nearby particles [25]. However,
sequential solutions are relatively slow to process billions of galaxies. There are also various
parallel group finders for distributed memory machines with low-latency networks that are often
used in simulations (See Section 3).

Group finding implementations, whether sequential or parallel, are in-core and thus require
large enough available memory to fit the dataset and internal data structures. This means that find-
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ing groups and analyzing large simulation datasets require supercomputers of comparable capacity
as the one used to generate them. For the very large datasets these resources are not readily avail-
able. In the cases where there is enough aggregate memory to execute the group finding process,
the end-to-end running time is dominated by the I/O required to load the input dataset and pro-
duce the results. We have developed an alternative data-intensive group finding approach named
DiscFinder, which complements existing approaches. DiscFinder is useful for finding groups in
datasets need to be loaded from external storage, such as it is often the case in the analysis of as-
tronomy surveys and post-simulation analysis of synthetic datasets. DiscFinder makes it possible
to find groups in datasets that are much larger than the memory of the available compute resources.

3 Related Work

Group finders used in astrophysics refers to a class of clustering approaches. The group mem-
bership criteria used in the basic FOF approach may not be appropriate for certain applications.
Variations of the base algorithm are designed to handle uncertainties in the input data, and to take
into account other particle properties besides their positions [18, 38]. For example, Extended FOF
(EXT-FOF) is a finder used in photometric datasets [3]; probability FOF (pFOF) is used to identify
galaxy groups in catalogs in which the red shift errors have large dispersions [26]. Hierarchical
FOF [18], SOF [39], SKID [38], DENMAX [15], IsoDEN [31], HOP [11] and Sub-halos [33],
among others, are sophisticated group finders with selection criteria that take into account the
density of the the neighborhood surrounding a particle and whether or not that particle is gravi-
tationally bound to the larger structure. The approximate implementation from the University of
Washington “N-body shop” (aFOF [36]) aims to overcome the severe slowdown experienced by
the basic FOF implementation when the the linking parameter T is relatively large.

Parallel group finders, such as pHOP [27], HaloWorld [30], Amiga Halo Finder (AHF) [17] and
Ntropy [14], are implemented atop the Message Passing Interface (MPI) [28] and are designed to
execute on parallel distributed memory machines with a fast low-latency interconnect between the
processing nodes. These implementations are suitable for finding groups during the execution of
the simulation. Ntropy is implemented as a framework atop MPI that provides a distributed kd-tree
abstraction. One of its goals is to make it easy to implement analysis algorithms, such as FOF, on
massively parallel distributed memory platforms. The user writes a function for reading the data
that the N-tropy framework calls at run time to load the data into memory.

All the aforementioned approaches require the complete dataset to fit in memory to execute.
Their reported performance exclude the time needed to load the data and assume that the data is
already in memory, which makes sense for the case where these approaches are used in numerical
simulations. Recently, Kwon et al. developed an approach atop Dryad that shares similarities with
the work presented here [24]. They have shown results for clustering datasets with up to 1 billion
particles using 8 nodes.

4 DiscFinder

DiscFinder is a distributed approach for group finding in datasets that may be larger than the
total aggregate memory of computers performing the computation. DiscFinder enables the use
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Figure 2: DiscFinder Pipeline. The DiscFinder computation flowgraph comprises the following stages:
1. Sampling (dist), 2. Splitting (seq), 3. Partitioning (dist), 4. Clustering (dist), 5. Merging (seq), and 6
Relabeling (dist).

l

of stand-alone sequential group finders in a distributed setting, and thus leveraging the effort that
has been put in the development of those sequential implementations. At a high level, the basic
idea behind DiscFinder is to take a large unordered input particle set, then organize it and split
it into multiple spatial regions and find groups in each region using the sequential group finder.
The resulting groups from each region are merged to obtain the global set of groups. Figure 2
depicts the stages involved in the DiscFinder pipeline. As in many other computational sciences
applications that deal with a spatial phenomena, DiscFinder uses spatial partitioning to split and
distribute the computation across processing units. Unlike other applications, there is no explicit
communication in the algorithms used at the application level. Instead, the needed data is moved
by an underlying framework or through a distributed file system.

Particle Set. The input particle dataset contains tuples of the form (parId,pos,oAttr), where
parId is the particle identifier, pos is the position of the particle in 3D space, and oAttr are other
particle attributes such as mass, temperature, velocity, and so on. For the purpose of clustering
using the FOF criteria, we are only interested in parId and pos. Other attributes can be safely
ignored and not read at all.

Sampling. The objective of this stage is to sample the dataset in order to build a suitable partition
of the data so the processing can be split into independent compute nodes. Since the particles
positions in space is the primary criteria for determining the groups, the generated partitions corre-
spond to regions of space. The simplest approach is to divide the space into equal-size disjoint re-
gions, such as 3D cubes. We have a-priori knowledge that points in real-world astronomy datasets,
whether generated by simulation or collected by observation, rarely follow a uniform distribution.
This makes it undesirable to simply split the space into equal-size cubes, as this partitioning scheme
generates partitions with very disparate number of points per partition, and thus becomes hard to
balance the load. A tree-based data structure, such as a kd-tree, can be used to split the domain
space into cuboid regions with equal number of points. This process is memory intensive and the
time complexity of building such kd-tree using a median-finding algorithm is O(nlogn), where n
is the number of particles. The resulting cuboid regions are axis-aligned rectangular hexahedra,
which we simply refer to as boxes.

To deal with the size of the input dataset, instead of building a kd-tree for the whole dataset,
we build a much smaller kd-tree with randomly selected sample points. The sampling stage is
performed in a fully data-parallel manner. The input dataset is divided into many disjoint pieces
such as file offset ranges or subsets of files for datasets made up of many files. Then a worker task
can sample each of these subsets by choosing a small percentage of the records, e.g., 0.01%, and
output the position of the sampled records. There is a sample set per worker task.

Splitting. This is a sequential step that creates the split boxes used for partitioning the particles. It
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takes the sample sets produced by the sampling tasks in the previous step and builds a kd-tree that
can be used to partition the input particle set into boxes with roughly the same number of particles
per box. The granularity of the boxes, and thus the depth of the tree, is chosen so the number of
particles per box fits in the memory of a worker task in the cluster stage of the pipeline. This is
a requirement for executing the sequential group finder in the cluster stage. This yields a number
of partitions that is usually much larger than the number of available worker tasks for the pipeline.
The number of worker tasks is proportional to the number of available compute nodes, e.g., 4 to 8
worker tasks per compute node. If the number of partitions is less than the number of worker tasks
that means the pipeline can be easily executed with fewer computers.

Shell-based Partitioning. This stage takes the input particle set and sorts it according to the par-
titions produced by the splitting phase. Splitting the data in disjoint spatial partitions requires
communication across neighboring partitions in order to determine whether a group crosses a par-
tition boundary. For example, the domain shown in Figure 1 is divided into 4 rectangular parti-
tions. Although, particles p3 and p4 are in separate partitions, they are close enough to belong
to the same group. DiscFinder is designed so each partition can be processed independently and
asynchronously. Partitions can be processed at different points in time. DiscFinder is targeted
to execute atop data processing frameworks, such as MapReduce, Hadoop, or Dryad, that do not
provide explicit communication primitives for the applications.

e Shell
(Partition1) area ( Partition 2)
\ — Z

15'4

. [WaS
e p T
7/2 T

/ N
( Partition 3) ( Partition 4)

Figure 3: Shell-based Partitioning Four partitions are shown here in two dimensions. Each partition has
an additional shell of length t/2 along the boundary. The shaded area at the top left of the figure represents
the size of the partition once it has been extended to include its shell.

DiscFinder uses a shell-based partitioning scheme to avoid explicit communication at the cost
of a small increase in the memory requirement for each partition. All the partitions are extended by
a small factor s/ = T/2 on each side, where 7 is the linking length parameter for the group finder.
The end result is that a partition has a shell around it that contains points shared with adjacent
partitions. Shell-based partitioning enables the independent and asynchronous processing of each
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partition by decoupling the local computation of groups inside a partition from the resolution of
groups that span across partitions.

To illustrate the approach, consider a 2D domain made of 4 partitions as shown in Figure 3. The
non-overlapping partitions are delimited by the heavy continuous line. Each partition is extended
along each boundary by an additional length of T/2 (shaded area). The particles numbered from
1 to 7 in the figure form a group. Without the shell, two disjoint groups would be created. The
group in the top-left partition would contain three of the points (1,2,3) and the group in the top
right partition would comprise the other four points in the group (4,5,6,7). Joining these two non-
overlapping groups requires communication across the tasks that process these partitions. Once the
partitions are extended with the shell, the top-left partition finds a group G| = 1, ..., 5; the top-right
partition contains a group with 5 points G, = 3,...,7. The members of these two groups overlap,
which facilitates the unification of the groups in a separate merging stage down the pipeline.

The choice of the value for s/ ensures that when two points in separate partitions are at a dis-
tance d(p;, p j) < 1, then at least one of them is included in the shell of one of the partitions, which
is enough to later find the groups that span multiple partitions. Note that shell-based partitioning
increases the volume of each partition and potentially the number of particles to be processed per
partition. This approach works under the assumption that the size of the shell is relatively much
smaller than the size of the partition. In practice, this assumption holds because the chosen linking
length parameter 7 is relatively small compared to the edge length of each partition.

The partitioning stage is distributed across many worker tasks. Each task reads a chunk of the
input particles and classifies them into buckets that correspond to the spatial partitions (including
their shells). Each bucket contains a subset of the particles belonging to a spatial partition.

Distributed Clustering. In this stage, all the buckets corresponding to a partition are collected
so a worker task has all the particles in a shell-extended partition. The partitions are distributed
to worker tasks. Locally, each task executes a sequential group finder, such as the UW FOF or
aFOF implementations [37, 36]. For each point in a partition, the local group finder generates a
(pointId, pGroupId) tuple, where the group identifier pGrouplId is local to each partition. The
generated tuples are separated into two sets: shell set (S) and interior set (I). The shell set contains
points inside the shell region only. This set is passed to the merging stage. The interior set contains
points that fall inside the original disjoint partition, but not in the extended shell of any partition.
This set is stored and used again later in the relabeling stage. At the end of the distributed clustering
stage there are P shell sets and P interior sets, where P is the number of partitions generated by the
splitting phase.

Merging As shown in Figure 3, a point inside a partition’s shell is processed in two or more
partitions. Such a point may belong to different groups across partitions. Figure 4 shows the
resulting groups for two partitions (1 & 2) of Figure 3. Points 3,4,5 are assigned to group 1 in
partition 1 and to group 2 in partition 2. The purpose of the merging stage is to consolidate groups
that span multiple partitions by using P shell sets (S) generated in the previous stage. The amount
of data passed to this stage is relatively much smaller than the size of the particle datasets (since T
is very small), thus reducing both compute and I/O requirements for this stage.

The merging stage employs a Union-Find algorithm to merge subgroups that have common
points into unique global groups [13, 12]. Union-Find uses a disjoint-set data structure and to
maintain several non-overlapping sets, each one containing its own elements. This data structure
supports the following two operations: Union and Find. Union(A,B) merges two sets A and
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Figure 4: Merging Stage The shell sets for partitions 1 and 2 in Figure 3 contain groups that share common
points. The Merging Stage consolidates the sub-groups that span multiple partitions.

B and replaces them with their union. Find(e) determines to which set an element e belongs.
For the purpose of the group merging stage, a group corresponds to a set in the disjoint-set data
structure, and a particle corresponds to an element. Initially, each particle belongs to its own group.
The procedure iterates over all the particles and when it discovers that a particle belongs to two
different groups, then it merges those two groups using the Union operation. The output of the
merging procedure is a list of relabeling rules that describe the equivalent groups, i.e., the groups
that span across partitions. These rules are tuples of the form (01dGroupId,newGroupId). A set
of relabeling rules is produced for each partition.

This data structure and the corresponding Union-Find algorithm can be implemented using
hash tables. The complexity of the Union-Find algorithm is nearly linear in the number of input
elements [34]. Since it is only applied to a subset of the particles, the ones inside the shells,
its running time is relatively short compared to the rest of the pipeline. Since this algorithm is
sequential, its scalability is limited by the memory available in a single processing node. We have
used it to execute pipelines with close to 15 billion particles. Until now, its memory requirements
have not been an issue.

Relabeling. This is the last stage in the pipeline. Its purpose is to apply the relabeling rules from
the merging stage to each of the partitions generated in the clustering stage. The is a data-parallel
process. The work is distributed to many tasks, each task applies the rules to a partition. This is
done in a single pass. The partitions are expected to be evenly balanced, thus the running time of
this step is proportional to N /m, where N is the total number of particles and m is the number of
available processing units.
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5 Pipeline Implementation

The DiscFinder algorithms are designed to be implemented using a MapReduce style of com-
putation [8]. We implemented the DiscFinder pipeline atop Hadoop — an open-source, free im-
plementation of the MapReduce framework![35]. Alternatively, the DiscFinder pipeline could be
implemented as a collection of programs that use a programming interface such as MPI or OpenMP
[4] and are glued together with scripts that execute with the help of a resource manager such as
PBS [2]. Our objective is to explore how the MapReduce programming model, and frameworks
such as Hadoop, can be used to tackle large-scale data-intensive analytics found in many science

domains.
Partitioning
Mapper

Sub-domain
clusters

Clustering
Reducer

Shell info

— - Sub-domain
Particle | |Partitioning Clustering clusters
Set Mapper Reducer
— - — Shell info
— - Sub-domain
L | Partitioning Clustering clusters
Mapper Reducer
— — Shell info

Figure 5: DiscFinder partition and clustering stages. This is the central MapReduce job in the Dis-
cFinder pipeline

Hadoop. Hadoop is a distributed framework that has become very popular among the Internet
services companies. It is widely used at companies such as Yahoo! and Facebook for their ana-
lytics applications for web graph and social network data. Applications for the framework use a
MapReduce programming model. Hadoop has a few features that make it attractive for large-scale
data-intensive processing: its support for processing datasets larger than the available memory of
the compute resources; its ability to scale the processing to handle very large datasets; its resilience
to individual component failures; its relatively simple programming model; and, its community-
supported open-source implementation.

As a first approximation, Hadoop provides a mechanism for applying a user-defined procedure
(map function) over a large dataset, then grouping the results by a key produced by the map func-
tion, and then applying another user-defined procedure (reduce function) to the resulting groups.
The execution of these functions is distributed over a compute cluster. The framework handles the
partitioning of the input data, the data communication, the execution of the tasks and the recovery
from errors such as hardware failures and software crashes. For example, Figure 5 illustrates a
MapReduce job that belongs to the DiscFinder pipeline. The input particle dataset is split across
three map tasks that perform the partitioning stage by assigning a key (partition box id) to each
input record (particle). The framework collects all the intermediate records that have the same
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key (box id) such that a reducer process receives all the records with the same box id. Separate
distributed processes execute the reduce function that, in this case, perform the clustering pipeline
stage. Each reducer produces a subset of the output dataset.

The map and reduce functions may execute in the same set of computers. The datasets are
available to the tasks on a distributed file system (DFS). Hadoop works with a variety of DFSs
including parallel file systems, such as PVFS2, and Hadoop’s own HDFS. HDEFS is modeled after
the Google File System [16]. It is designed to aggregate the storage capacity and I/O bandwidth
of the local disks in a compute cluster. Adding hosts to the file system results in capacity and
bandwidth scaling. In a typical Hadoop deployment, the computation is carried out in the same
computer used for HDFS. The Hadoop job scheduler makes an effort to place the computation in
the hosts that store the data.

DiscFinder Pipeline. The DiscFinder pipeline (Fig 2) is implemented as a succession of Hadoop
MapReduce jobs and sequential programs written in Java. The sampling and splitting stages are
implemented as one MapReduce job, the partitioning and clustering phases make up another job.
The merging stage is implemented as a stand-alone Java program. The relabeling phase is a dis-
tributed map-only job.

The procedures shown below are the high-level driver for the DiscFinder pipeline. It takes as
input the astrophysics dataset P and the grouping parameters (here T) and produces as output a list
with mappings from particles to groups. Remember that the input set P contains a set of tuples
where each tuple corresponds to a particle in the dataset. The tuple contains information about the
particle such as its identifier and other attributes such as its position and velocity among others.

Procedure DiscFinder(P, T): Driver for the DiscFinder pipeline.
Input: P is a set of N points, where each point p; is of the form <parId, attributes>
Input: T is the linking distance parameter for FOF
Output: Mapping of particles to groups.

// Run a map reduce job for the sampling phase
1 MapReduce( SamplingMap, SamplingReduce );
/* Use map reduce for point partitioning points and running the group
finder distributedly */
2 MapReduce( PartitionMap, ClusteringReduce );
3 CollectShell() // Collect the shell data in a central location
4 UnionFind() // Merge groups across partitions
// Finally, use a map-only job to relabel the points
5 MapReduce( RelabelMap, NullReducer );

The first step (Line 1) corresponds to the dataset sampling in the processing pipeline. It is

carried out using a distributed MapReduce job. The map and reduce functions for this step are
shown in detail below in the Procedures SamplingMap and SamplingReduce.
Sampling and Splitting. The sampling stage is implemented as a map function in the first job.
Each map task randomly selects a subset of particles. A single reducer task in this job implements
the splitting stage (See Alg. 5). The CubeSplit procedure (called in line 5), takes the output of
the sampling and, using a kd-tree, splits the domain into partitions that are used in the subsequent
MapReduce job. The partition description is written to HDFS.
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5. PIPELINE IMPLEMENTATION

Procedure SamplingMap(Int Key, Particle Value)
Input: Key is a randomly generated integer value for each point.
Input: Value contains relevant payload values for the particle, such as <parId, position>
Input: c is a pre-defined prime integer to indicate sampling frequency. We use ¢ = 16001 in
our experiments.
Output: Sampled subset of particles

/* The key is used to sample the input points, since the key is
randomly generated */
1 if Key % c == 0 then
2 ‘ EmitIntermediate(1, Value.position)
3 end if

Procedure SamplingReduce(Int Key, Iterator Values)
Input: Key as emitted by the SamplingMap function.
Input: Values contains the positions for the sampled particles.
Output: Partitioning scheme for the input dataset

List<Particle> particleList = null

foreach v in Values do
particleList.add(v)

end foreach

Output(CubeSplit(particleList))

/* Use particlelList to build a kd-tree and use T to generate the
boundary of each cube. */

N A W N -

Fartitioning and Clustering. The second job executes the partitioning and clustering stages, which
correspond to the the bulk of the processing in the pipeline. The partitioning stage is executed
by the map tasks (See Figure 5). Each task takes a portion of the particle dataset and executes the
function shown in Procedure PartitioningMap.This procedure is executed for each input particle.
It receives as parameters the particle’s identifier and position. First, it determines the partition in
which this particle falls (Line 1) and emits a tuple with the partition (box.id) as the key, and the
particle id and position as the values. Additional tuples are emitted for particles that fall in the
shell of any other partition(s) (Lines 3-7).

The framework groups the tuples having the same box id and sends them to a reducer task
and calls the ClusteringReduce procedure for each group of values that have the same key. This
procedure executes the external group finder implementation (Line 1), specifically the UW FOF
sequential implementation [37]. It involves creating an input file in the local file system for the
external program, launching the executable and reading the output produced by the program from
the local file system. The group membership information for particles that lie in the shell is stored
in a separate file (Lines 4-6).

Merging. The merging stage is implemented as a sequential Java program that reads the files
with the shell information, which were generated by the ClusteringReduce procedure, executes the
union-find algorithm and writes out the relabeling rules only for groups that span across partitions.

11



6. EVALUATION

Procedure PartitioningMap(pld, position)
Partition particles into overlapping boxes.
Input: pld — particle identifier.
Input: position — particle position (<x,y,z>).
Output: Tuple — (key = boxId,pId,position)

1 box <—getPartitionBox( position )

EmitIntermediate( box.id, pld, position )

if position in shell(box) then
// Emit tuples for adjacent boxes
foreach oBox: getAdjBoxes( position, box ) do

\ EmitIntermediate( oBox.id, pId, position )

end foreach

end if

w N

N A

Procedure ClusteringReduce(boxId, particles)
Apply the sequential group finder to a partition (box).
Input: boxId — partition identifier.
Input: particles — list of tuples (pId,position).
Output: Particle membership list (pId — gId). where pId: particle id, gId: group id.

// Run local group finder
1 particleToGroupMap = groupFind( particles )
foreach particle in particleToGroupMap do
3 Emit( particle.id, particle.groupld )
// Write in a separate file the group membership for particles in the
shell

if particle in shell(box) then

‘ Output( particle.id, particle.groupld )
end if
end foreach

[

N QA A

Relabeling. A map-only job (no reducer) implements the final relabeling stage. Each task reads
the groups for a partition and the corresponding relabeling rules. For each tuple (pid, gldLocal),
a corresponding tuple (pid, gldGlobal) is generated using the relabeling rules to map from local
group (gldLocal) to the equivalent global group (gldGlobal).

6 Evaluation

The goal of our evaluation is to test whether DiscFinder is a feasible approach for clustering mas-
sive particle astrophysics datasets, and indirectly whether similar approaches can be used for other
large-scale analytics in science. We want to measure and understand the overheads introduced by
the DiscFinder algorithm and the Hadoop framework, and thus find ways to improve both the ap-
plication and the framework. We conducted a set of scalability and performance characterization

12



6. EVALUATION

Procedure UnionFind(groupMapping): Execute the union-find algorithm for particles on the
shell.

10
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Input: groupMapping is a set of <parId, groupId> pairs.
Output: A set of group-transition rules.

parToGroupMap <—EmptyMap;
groupToGroupMap <-EmptyMap;
foreach (parld, groupld): groupMapping do

if groupld not in groupToGroupMap then
// Add mapping: groupId to groupld
groupToGroupMap.put( groupld, groupld )

end if

if parld not in parToGroupMap then

// Add mapping: parIld to groupId

parToGroupMap.put( parld, groupld )

else

groupld* = parToGroupMap.get( parld );

while groupld not equal groupToGroupMap.get( groupld ) do

‘ groupld = groupToGroupMap.get( groupld )
end while
while groupld* not equal groupToGroupMap.get( groupld* ) do
\ groupld* = groupToGroupMap.get( groupld* )

end while

if groupld not equal groupld* then
// Merge (union) groups groupIld and groupId*
groupToGroupMap.put( groupld, groupld* )

end if

end if

nd foreach

oreach (groupld, groupld’) : groupToGroupMap do

if groupld not equal groupld’ then
while groupld’ not equal groupToGroupMap.get( groupld’ ) do
‘ groupld’ = groupToGroupMap.get( groupld’ )
end while
Output <groupId, groupId’> to group-transition rule file.
end if

end foreach

experiments. Below are the preliminary results.

Datasets. In our evaluation we used snapshots (time slices) from the three different cosmology
simulation datasets shown in flgure 6. BHCosmo simulates the evolution of the universe in the
presence of black holes [9]. Coyote Universe is part of a larger series of cosmological simulations
carried out at Los Alamos National Laboratory [20]. DMKraken is a 14.7 billion dark-matter
particle simulation carried out by our collaborators at the CMU McWilliams Center for Cosmology.
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Procedure RelabelMap(Int key, Int value) Relabel groups and particles for each partition. A
mapper operates on a set of particles in a cube partition. Each entry in this set is of the form
<parld, groupld>

Input: Group-transition rules produced by the Union-Find procedure.

Input: Key is the particle ID (parId).

Input: Value is the group ID (groupId).

Output: Relabeled particle set.

1 if exists mapping from groupld to groupld’ then

// Relabel by changing groupId to groupld’
2 Emit(parld, groupld”)

3 else

// Emit original result

4 Emit(parld, groupld)

5 end if

Name Particle Snap  Snap Total
count size count size

BHCosmo 450 M 850MB 22 10.5GB
Coyote Univ. 1.1B  32GB 20 640GB
DMKTraken 147B 0.5TB 28 14 TB

Figure 6: Cosmology simulation datasets

These datasets are stored using the GADGET-2 format [32].

Experimental Setup. We carried out the experiments in a data-intensive compute facility that
we recently built, named the DISC/Cloud cluster. Each compute node has eight 2.8GHz CPU
cores in two quad-core processors, 16 GB of memory and four 1 TB SATA disks. The nodes are
connected by a 10 GigE network using Arista switches and QLogic adapters at the hosts. The
nominal bi-section bandwidth for the cluster is 60 Gbps. The cluster runs Linux (2.6.31 kernel),
Hadoop, PVFS2 (2.8.1) and Java (1.6). The experiments were carried out using Hadoop 0.19.1.
The compute nodes serve both as HDFS storage servers and worker nodes for the MapReduce
layer. A separate set of 13 nodes provide external RAID-protected storage using PVFS2. Hadoop
is configured to run a maximum of 8 simultaneous tasks per node: 4 mappers and 4 reducers.

Datasets Pre-processing The original input data is in the GADGET-2 format, which is a binary
format used by astrophysicists. To fit it naturally to the Hadoop framework and speed up imple-
mentation, we converted all the input data to a simple text format. The whole conversion costs
significantly (e.g. 11 hours for the 14.7 Billion point dataset), although each dataset only needs to
be processed once.

6.1 Scalability Experiments.

With these experiments we want to determine whether DiscFinder can be used to cluster datasets
that are much larger than the aggregate memory of the available compute resources, and how its
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6. EVALUATION

running time changes as we vary the available resources. Similar to the evaluations of compute-
intensive applications, we performed weak and strong scaling experiments. However, the results
are presented in terms of number of compute nodes, as opposed to number of CPUs. This is more
representative of the evaluated application, where the memory capacity and I/O bandwidth are
the bottlenecks. Due to the nature of how tasks are managed in Hadoop, there is no one-to-one
mapping between tasks and number of CPU cores. The results reported below are the average of
three runs with system caches flushed between runs. Some of the running times include partial
task failures that were recovered by the framework and allowed the job to complete successfully.

In the weak scaling experiments, the work per host is kept constant and the total work grows
proportional as compute resources are added. In the strong scaling experiments, the total work
is kept constant and the work per host changes inversely proportional to the number of compute
nodes. We varied the number of compute hosts from 1 to 32. The same hosts were used for HDFS
as well. This reflects a Hadoop/HDFS deployment in a cluster with the given number of nodes.
The results are shown in figures 7 and 8. The X axis in these figures is the cluster size (number of
worker nodes) in log scale.
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4\ “4=14.7 B \
10000

Nodes 05B 1.1B 14.7B
1 23107 7625 n/a
2 8149 2754 n/a
4 2890 1234 n/a
1000 8 1326 675 n/a
767 415 30816
470 299 11429

Processing time (secs)
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N O\

100

1 2 4 8 16 32
Number of compute nodes

Figure 7: Strong scaling.

Strong Scalability. Figure 7 shows the strong scalability of the DiscFinder approach. The Y axis
is the running time in log scale. The curves correspond to different dataset sizes of 14.7, 1 and
0.5 billion particles. Notice that the 14.7 billion dataset is larger than the memory available for
the experiments (16 and 32 nodes). The same applies for various scenarios in the cases for 1 and
0.5 billion particles. Linear scalability corresponds to a straight line with a slope of -1, where
the running time decreases proportional to the number of nodes. The DiscFinder running time is
not linear. With a small number of nodes, the running time suffers because each node performs
too much work, and with a larger number of nodes each node performs too little work and the
framework overhead dominates.
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6. EVALUATION

Weak Scalability. In order to perform the weak scaling experiments, we extracted sub-regions of
the different datasets to match the appropriate size needed for the experiment. The Y-axis in the
weak scaling graph (Figure 8) is the elapsed running time in seconds (linear scale). The X-axis is
the number of nodes used to run DiscFinder. The curves correspond to different problem sizes of
64 (top) and 32 (bottom) million particles per node. A value of 32 nodes in the X axis corresponds
to a problem size of 1 billion particles for the 32M/node case. Similarly, the 16 node, 64M/node
case has a total problem size of 1 billion particles.
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Figure 8: Weak scaling values in seconds.

The best running time to compute nodes has a sweet spot around 4 to 8 nodes for datasets
smaller than 1 billion particles. We expect non-negligible overheads, introduced by the framework
and the approach, due to the incurred I/O, data movement and non-linear operations such as the
shuffle/sort in the job that performs the partitioning and clustering stages. A non-negligible amount
of memory in each node is used for the HDFS processes. The shuffle/sort operation also uses large
amounts of memory per reducer task when the data sizes are large. The running time in all cases
exhibits a non-linear trend, especially for larger number of nodes where the framework overheads
dominate the running time. Even with all the aforementioned overheads and task failures, it was
possible to process and cluster particle datasets that were much larger than the available memory.

6.2 Performance Characterization.

We are interested in gaining insight about the DiscFinder running time. We performed additional
experiments to break down the total running time into the time spent in each stage of the pipeline.
In addition, we split the running time of the second job (Partitioning and Clustering) into the
phases corresponding to finer-grained operations in that job. For this set of experiments we used
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6. EVALUATION

32 nodes and focused on the largest (14.7 billion particles) dataset. The phases for the running
time breakdown are the following.

1. Sampling: This corresponds to the the sampling stage of the pipeline.
2. Splitting: This stage builds a kd-tree to spatially partition the space.

3. Loading input data: This refers to reading the particle dataset from HDFS. This step is
performed in the map phase of the main MapReduce job (Partitioning and Clustering).

4. Loading box index: Time spent loading the index that contains the partition information.
This is done in the map phase of the second job.

5. Box search: This is the time required to search the spatial partition information in the map
phase of the second job.

6. Shuffling / Sorting: This is the time required to move data from the mappers to the reducers
in the second job.

7. FOF data generation: This is the time required in the reducer to generate the input data for
the the external group finder program.

8. FOF execution: This is the time needed to run the external group finder.
9. Merging: Pipeline merging stage.
10. Relabeling: Pipeline relabeling stage.

We conducted extra experiments from the start of the pipeline to each of above phase. Using
the time difference between these experiments we have acquired the running time of each phase.
For instance, the running time of step4 is measured by the difference between experiment of phases
1-4 and experiment of phases 1-3.

The detailed breakdown of the running time for each of these steps is shown in Figure 9.
Columns 2 and 3 show the absolute (in seconds) and relative time for the unmodified implementa-
tion of the pipeline. The relative time is expressed as a percentage of the total running time. The
data shows that the Sampling/Splitting, Box search and Shuffle/sort steps account for about 80%
of the running time. The time spent in the sampling/splitting step was unexpectedly high. This is a
performance bug introduced by an early optimization. The long time spent in the box search step
was due to an inefficient implementation of the search. An incorrect setting of a Hadoop parameter
caused the shuffle/sort step to take longer than necessary.

Performance Improvements. We performed a set of optimizations to improve the overall per-
formance of the pipeline. The breakdown of the running time for the improved version is shown
in columns 4 and 5 of Figure 9. Column 4 has the absolute time for each step in seconds and
Column 5 contains the relative time with respect to the total running time of the improved version.
Column 6 shows the speedup for that step relative to the baseline. The overall speedup is 3.1X,
However, do not read too much into this result. What it really means is that it is very easy to
introduce performance bugs that may lead to inefficient implementations. Below are the anecdotes
of our debugging experience.
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Step Base Improved  Speedup
Sec Rel% | Sec Rel% X

Sampling 1555 13.4%| 859 22.5% 1.8
Splitting 62 0.5% 62 1.6% 1.0
Load particles 229 2.0%| 232 6.1% 1.0
Load box idx 3 0.0% 12 0.3% 0.3
Box search 3422 29.5%| 122 3.2% 28.0
Shuffle / sort | 4363 37.6%| 1000 26.2% 4.4
FOF data gen| 762 6.6%| 320 8.4% 2.4
FOF exec 576 5.0%| 584 15.3% 1.0
Merging 151 1.3%| 137 3.6% 1.1
Relabeling 486 42%| 482 12.7% 1.0
Total 11609 100.0%| 3810 100.0% 3.0

Figure 9: Breakdown of the DiscFinder elapsed time needed to find groups in a snapshot of the
DMKTraken 14.7 billion particle dataset on 32 worker nodes.

e Fixing the Sampling/splitting Phase. During the early development stages, a “performance
optimization” was introduced in the sampling phase. The idea was to avoid executing the
sampling/splitting stages in a separate job, and instead integrate them in the map phase of
the second job. Since the sampling is expected to read a relatively small portion of the input
dataset (in the order of 0.01%), it made sense to have all the tasks perform the full sampling
in parallel and construct the spatial partitioning locally. This can be achieved by ensuring that
all tasks sample the same particles by using the same seed for the random number generator.
Since the Hadoop framework handles the reading of the records, it is not straightforward
to choose what records get read. The initial sampling implementation would simply emit a
very small fraction of the records and discard the rest. This was acceptable for the intended
purpose, which was to reduce the number of particles used in the construction of the kd-tree.
However, this meant that all the map tasks were reading the complete dataset in order to
do the sampling. The current solution consists of performing the sampling outside Hadoop
in a separate stage as originally intended. The sampling time is still relatively high. We
are working in alternate solutions to further decrease the sampling time using some of the
sampling facilities available in more recent versions of Hadoop (0.20.x).

e Speeding up Box Lookups. The performance of the box lookup was affected by the initial
implementation choice. Since the number of partitions is relatively small, we used a simple
linear search mechanism for this structure. However, this box lookup is performed at least
once for every particle, and in some cases more than once when the particle is in a shell re-
gion. On aggregate, the lookup time becomes significant. Replacing the lookup mechanism
with a routine that uses a O(logn) algorithm, where n is the number of partitions, provided
major benefits.

e Adjusting Number of Reducers. In this set of experiments the particles are split into 1024
spatial partitions. At first, it was only natural for the domain application developer to set the
total number of reduce tasks equal to the total number of partitions. In this way, a reduce
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task would process a single partition. This is the same approach used in high-performance
compute intensive applications, where the number of partitions matches both the number of
processes and processors. During the execution of the original DiscFinder implementation,
we noticed in our cluster monitoring tool that the network bandwidth consumption had a
cyclic behavior with periods of high utilization followed by idle periods. This effect was
caused by multiple waves of reduce tasks fetching data produced by the map tasks. By setting
the number of reducers for the job to (numberOfNodes — 1) x reducersPerNode = 124, all
the reduce tasks were able to fetch and shuffle the data in a single wave, even in the presence
of a single node failure. In this scenario, a reduce task processed multiple domain partitions.
This adjustment required no code changes, as this is the normal mode of operation for the
framework.

Although, the running time significantly decreased after these modifications, there is clearly
room for additional improvement, both at the algorithmic level in the application and in terms of
efficiency in the framework.

6.3

Future optimizations
Fine tunning the size of the memory buffers used for the shuffle/sort step in Hadoop jobs.

Re-designing the pipeline so the external FOF can run on the map phase as opposed to the
reduce phase in order to make more efficient use of the memory, which would allow for
higher parallelism and more efficient use of the memory.

Reading binary data directly: Loading the data using a binary Hadoop reader to avoid pre-
processing step.

Better sampling and box lookup implementation.

Shuffle: Text vs. binary shuffle transfers. Using a binary representation for transferring data
between map and reduce during the shuffle phase.

Shuffle: Compressing the intermediate tuples, to reduce the network 1I/O.

Producing compressed output in the last stage (relabeling)

7 Conclusion

The analysis of state-of-the-art and future astrophysics datasets is difficult due to their size. Group
finding and other analysis techniques need to be scaled to operate on these massive datasets. Dis-
cFinder is a novel data-intensive group finder that scales to datasets with tens of billions of parti-
cles. DiscFinder has enabled the analysis of the largest state-of-the-art cosmology datasets. Never-
theless, its first implementation has relatively high overheads introduced by application algorithms
and framework implementation. We described different approaches to improve its performance.
As the analysis of truly very large datasets requires a data-intensive approach, there are opportuni-
ties and needs to improve the performance and extend the programming models to better support
analytics applications for science.
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