
Using Provenance to Aid in Personal File Search

Sam Shah
�

Craig A. N. Soules
†

Gregory R. Ganger
‡

Brian D. Noble
�

�
University of Michigan

†
HP Labs

‡
Carnegie Mellon University

Abstract

As the scope of personal data grows, it becomes in-

creasingly difficult to find what we need when we need

it. Desktop search tools provide a potential answer, but

most existing tools are incomplete solutions: they index

content, but fail to capture dynamic relationships from the

user’s context. One emerging solution to this is context-

enhanced search, a technique that reorders and extends

the results of content-only search using contextual infor-

mation. Within this framework, we propose using strict

causality, rather than temporal locality, the current state

of the art, to direct contextual searches. Causality more

accurately identifies data flow between files, reducing the

false-positives created by context-switching and back-

ground noise. Further, unlike previous work, we con-

duct an online user study with a fully-functioning imple-

mentation to evaluate user-perceived search quality di-

rectly. Search results generated by our causality mech-

anism are rated a statistically-significant 17% higher on

average over all queries than by using content-only search

or context-enhanced search with temporal locality.

1 Introduction

Personal data has become increasingly hard to manage,

find, and retrieve as its scope has grown. As storage ca-

pacity continues to increase, the number of files belong-

ing to an individual user, whether a home or corporate

desktop user, has increased accordingly [7]. The prin-

ciple challenge is no longer efficiently storing this data,

but rather organizing it. To reduce the friction users ex-

perience in finding their data, many personal search tools

have emerged. These tools build a content index and al-

low keyword search across this index.

Despite their growing prevalence, most of these tools

are, however, incomplete solutions: they index content,

not context. They capture only static, syntactic relation-

ships, not dynamic, semantic ones. To see why this is

important, consider the difference between compiler op-

timization and branch prediction. The compiler has ac-

cess only to the code, while the processor can see how

that code is commonly used. Just as run-time information

leads to significant performance optimizations, users find

contextual and semantic information useful in searching

their own repositories [22].

Context-enhanced search is beginning to receive atten-

tion, but it is unclear what dynamic information is most

useful in assisting search. Soules and Ganger [21] devel-

oped a system, named Connections, that uses temporal

locality to capture the provenance of data: for each new

file written, the set of files read “recently” form a kin-

ship or relation graph, which Connections uses to extend

search results generated by traditional static, content-

based indexing tools. Temporal locality is likely to cap-

ture many true relationships, but may also capture spuri-

ous, coincidental ones. For example, a user who listens

to music while authoring a document in her word pro-

cessor may or may not consider the two “related” when

searching for a specific document.

To capture the benefit of temporal locality while avoid-

ing its pitfall, we provide a different mechanism to de-

duce provenance: causality. That is, we use data flow

through and between applications to impart a more accu-

rate relation graph. We show that this yields more desir-

able search results than either content-only indexing or

kinship induced by temporal locality.

Our context-enhancing search has been implemented

for Windows platforms. As part of our evaluation, we

conduct a user study with this prototype implementa-

tion to measure a user’s perceived search quality directly.

To accomplish this, we adapt two common techniques

from the social sciences and human-computer interac-

tion to the area of personal file search. First, we con-

duct a randomized, controlled trial to gauge the end-

to-end effects of our indexing technique. Second, we

conduct a repeated measures experiment, where users

evaluate the different indexing techniques side-by-side,

locally on their own machines. This style of experi-

ment is methodogically superior as it measures quality

1

USENIX '07 Annual Technical Conference, Santa Clara, CA, June 17–22, 2007.



directly while preserving privacy of user data and ac-

tions.

The results indicate that our causal provenance algo-

rithm fares better than using temporal locality or pure

content-only search, being rated a statistically-significant

17% higher, on average, than the other algorithms by

users with minimal space and time overheads. Further,

as part of our study, we also provide some statistics about

personal search behavior.

The contributions of this paper are:

1. The identification of causality as a useful mechanism

to inform contextual indexing tools and a description

of a prototype system for capturing it.

2. An exploration of the search behavior of a population

of 27 users over a period of one month.

3. A user study, including a methodology for evaluating

personal search systems, demonstrating that causality-

enhanced indexing provides higher quality search re-

sults than either those based on temporal locality or

those using content information only.

The remainder of this paper is organized as follows. In

Section 2, we give an overview of related work. Section 3

describes how our system deduces and uses kinship rela-

tionships, with Section 4 outlining our prototype imple-

mentation. Section 5 motivates and presents our evalua-

tion and user study and Section 6 explores the search be-

havior of our sample population. Finally, Section 7 con-

cludes.

2 Related Work

There are various static indexing tools for one’s filespace.

Instead of strict hierarchal naming, the semantic file sys-

tem [10] allows assignment of attributes to files, facili-

tating search over these attributes. Since most users are

averse to ascribing keywords to their files, the seman-

tic file system provides transducers to distill file contents

into keywords. The semantic file system focuses on the

mechanism to store attributes, not on content analysis to

distill these attributes.

There are several content-based search tools available

today, including Google Desktop Search, Windows

Desktop Search and Yahoo! Desktop Search, among

others. These systems extract a file’s content into an

index, permitting search across this index. While the

details of such systems are opaque, it is likely they use

forefront technologies from the information retrieval

community. Several such advanced research systems

exist, Indri [1] being a prime example. These tools

are orthogonal to our system in that they all analyze

static data with well-defined types to generate an index,

ignoring crucial contextual information that establishes

semantic relationships between files.

The seminal work in using gathered context to aid in

file search is by Soules and Ganger [21] in the form of

a file system search tool named Connections. Connec-

tions identifies temporal relationships between files and

uses that information to expand and reorder traditional

content-only search results, improving average precision

and recall compared to Indri. We use some component

algorithms from Connections (§3.2) and compare against

its temporal locality approach (§3.1.1).

Our notion of provenance is a subset of that used by

the provenance-aware storage system (PASS) [17]. PASS

attempts to capture a complete lineage of a file, includ-

ing the system environment and user- and application-

specified annotations of provenance. A PASS filesystem,

if available, would negate the need for our relation graph.

Indeed, the technique used by PASS to capture system-

level provenance is very similar to our causality algo-

rithm (§3.1.2).

Several systems leverage other forms of context for file

organization and search. Phlat [5] is a user interface for

personal search, running on Windows Desktop Search,

that also provides a mechanism for tagging or classify-

ing of data. The user can search and filter by contex-

tual cues such as date and person. Our system provides a

simpler UI, permitting search by keywords only (§4), but

could use Phlat’s interface in the future. Another system,

called “Stuff I’ve Seen” [8], remembers previously seen

information, providing an interface that allows a user to

search their historical information using contextual cues.

The Haystack project [12] is a personal information man-

ager that organizes data, and operations on data, in a

context-sensitive manner. Lifestreams [9] provides an

interface that uses time as its indexing and presentation

mechanism, essentially ordering results by last access

time. Our provenance techniques could enhance these

systems through automated clustering of semantically-

related items.

3 Architecture

Our architecture matches that of Soules and Ganger [21]:

we augment traditional content search using kinship re-

lations between files. After the user enters keywords

in our search tool, the tool runs traditional content-only

search using those keywords—the content-only phase—

and then uses the previously constructed relation graph

to reorder these results and identify additional hits—the

context-enhancing phase. These new results are then re-

turned to the user. Background tasks run on the user’s ma-

chine to periodically index a file’s content for the content-

only phase and to monitor system events to build the rela-

tion graph for the context-enhancing phase. This section

describes how the system deduces and uses these rela-

tionships to re-rank results.

3.1 Inferring Kinship Relationships

A kinship relation, f → f ′ where f and f ′ are files

on a user’s system, indicates that f is an ancestor of f ′,

2



A

B

C

Read x Read y Paste Write z

Read w Copy to clipboard

Read u Read v
Relation Window

Time

Figure 1. A time diagram of system events used to illustrate the

differences between the provenance algorithms.

implying that f may have played a role in the origin of

f ′. These relationships are encoded in the relation graph,

which is used to reorder and extend search results in the

context-enhancing phase.

We evaluate two methods of deducing these kinship

relations: temporal locality and causality. Both methods

classify the source file of a read as input and the destina-

tion file of a write as output by inferring user task behav-

ior from observed actions.

3.1.1 Temporal Locality Algorithm

The temporal locality algorithm, as employed in

Soules and Ganger [21], infers relations by maintaining

a sliding relation window of files accessed within the

previous t seconds system-wide. Any write opera-

tion within this window is tied to any previous read

operation within the window. This is known as the

read/write operational filter with directed links in

Soules and Ganger [21], which was found the most

effective of several considered.

Consider the sequence of system events shown in Fig-

ure 1. There are three processes, A, B, and C , running

concurrently. C reads files u and v , A reads files x and y.
B reads w and copies data to A through a clipboard IPC

action initiated by the user. Following this, A then writes

file z.
The relation window at z’s write contains reads of y,w,

and v . The temporal locality algorithm is process agnos-

tic and views reads and writes system-wide, distinguish-

ing only between users. The algorithm thus returns the

relations {y → z, w → z, v → z}.
The relation window attempts to capture the transient

nature of a user task. Too long a window will cause un-

related tasks to be grouped, but too short a window will

cause relationships to be missed.

3.1.2 Causality Algorithm

Rather than using a sliding window to deduce user tasks,

this paper proposes viewing each process as a filter that

mutates its input to produce some output. This causal-

ity algorithm tracks how input flows—at the granularity

of processes—to construct kinship relations, determining

what output is causally related to which inputs.

Specifically, whenever awrite event occurs, the follow-

ing relations are formed:

(a) Any previous files read within the same process are

tied to the current file being written;

(b) Further, the algorithm tracks IPC transmits and its

corresponding receives, forming additional relation-

ships by assessing the transitive closure of file system

events formed across these IPC boundaries.

That is, for each relation f → f ′, there is a directed left-

to-right path in the time diagram starting at a read event

of file f and ending at the write of file f ′. There is no

temporal bound within this algorithm.

Reconsidering Figure 1, A reads x and y to generate

z; the causality algorithm produces the relations {x →

z, y → z} via condition (a). B produces no output files

given its read ofw, but the copy-and-paste operation rep-

resents an IPC transmit from B with a corresponding re-

ceive in A. By condition (b), this causes the relation

w → z to be made. C’s reads are dismissed as they do

not influence the write of z or any other data.

Causality forms fewer relationships than temporal lo-

cality, avoiding many false relationships. Unrelated tasks

happening concurrently are more likely to be deemed

related under temporal locality, while causality is more

conservative. Further, when a user switches between dis-

parate tasks, the temporary period where incorrect rela-

tions form under temporal locality is mitigated by the

causality algorithm.

A user working on a spreadsheet with her music player

in the background may form spurious relationships be-

tween her music files and her document under tempo-

ral locality, but not under causality; those tasks are dis-

tinct processes and no data is shared. Additionally, if she

switches to her email client and saves an attachment, her

spreadsheet may be an ancestor of that attachment under

temporal locality if the file system events coincide within

the relation window.

Long-lived processes are a mixed bag. A user opening

a document in aword processor, writing for the afternoon,

then saving it under a new name would lose the associa-

tion with the original document under temporal locality,

but not causality. A user working with her text editor to

author several unrelated documents within the same pro-

cess would have spurious relations formed with causality,

but perhaps not with temporal locality.

Causality can fare worse under situations where data

transfer occurs through hidden channels due to loss of

real context. This is most evident when a user exercises

her brain as the “clipboard,” such as when she reads a

value off a spreadsheet and then keys it manually into her

3



document. As future work, we are investigating using

window focus to demarcate user tasks [18] as a means to

group related processes together and capture these hidden

channels.

3.1.3 Relation Graph

Relations formed are encoded in the relation graph: a

directed graph whose vertices represent files on a user’s

systemwith edges constituting a kinship relation between

files and the weight of that edge representing the strength

of the bond. The edge’s direction represents an input file

to an output file.

For each relation of the form f → f ′, the relation

graph consists of an edge from vertex f to vertex f ′ with

the edge weight equalling the count of f → f ′ relations

seen. To prevent heavy weightings due to consecutive

writes to a single file, successive write events are coa-

lesced into a single event in both algorithms.

3.2 Reranking and Extending Results

After a query is issued, the tool first runs traditional

content-only search using keywords given by the user,

then uses the relation graph to reorder results and identify

additional hits. This basic architecture is identical to that

of Soules and Ganger [21].

Each content-only result is assigned its relevance score

as its initial rank value. The relation graph is then tra-

versed breadth-first for each content-only result. The

path length, P , is the maximum number of steps taken

from any starting node in the graph during this traver-

sal. Limiting the number of steps is necessary to avoid

inclusion of weak, distant relationships and to allow our

algorithm to complete in a reasonable amount of time.

Further, because incorrect lightly-weighted edges may

form, an edge’s weight must provide someminimum sup-

port: it must make up a minimum fraction of the source’s

outgoing weight or the sink’s incoming weight. Edges

below this weight cutoff are pruned.

The tool runs the following algorithm, called basic

BFS, for P iterations. Let Em be the set of all incom-

ing edges to node m, with enm ∈ Em being a given edge

from n to m and γ (enm) being the fraction of the outgo-

ing edge weight for that edge. wn0 is the initial value, its

content-only score, of node n. α dictates how much trust

is placed in each specific weighting of an edge. At the

i-th iteration of the algorithm:

wmi =
∑

enm∈Em

wni−1 ·
[
γ (enm) · α + (1 − α)

]
(1a)

After all P runs of the algorithm, the total weight of each

node is:

wm =

P∑

i=0

wmi (1b)

budget.xls (a)

memo1.doc (b)

3

memo2.doc (c)

4

expenserep.doc (d)

7

Figure 2. Relation graph used to illustrate the workings of the

basic BFS algorithm.

In (1a), heavily-weighted relationships and nodes with

multiple paths push more of their weight to node m. This

matches user activity as files frequently used together will

receive a higher rank; infrequently seen sequences will

receive a lower rank. The final result list sorts by (1b)

from highest to lowest value.

As an example, consider a search for “project budget

requirements” that yields a content-only phase result of

budget.xls with weight wa0 = 1.0. Assume that dur-

ing the context-enhancing phase, with parameters P=3,
α=0.75 and no weight cutoff, the relation graph shown in

Figure 2 is loaded from disk. Take node expenserep.doc,

abbreviated as d. The node’s initial weight is wd0 = 0
as it is absent from the content-only phase results. The

algorithm proceeds as follows for P iterations:

wd1 = wa0 ·
[
γ (ead) · α + (1 − α)

]
by (1a)

= 1.0 ·
[
(7/10) · 0.75 + 0.25

]
= 0.775

wd2 = 0 as wa1=0

wd3 = 0 as wa2=0

Finally, the total weight of node d is:

wd = 0 + 0.775 + 0 + 0 = 0.775 by (1b)

The final ordered result list, with terminal weights in

parentheses, is: budget.xls (1.0), expenserep.doc (0.775),

memo1.doc (0.475) and memo2.doc (0.475). In this ex-

ample, both memo files have identical terminal weights;

ties are broken arbitrarily.

Though straightforward, this breadth-first reordering

and extension mechanism proves effective [21]. We are

also investigating using machine learning techniques for

more accurately inferring semantic order.

4 Implementation

Our implementation runs on Windows NT-based sys-

tems. We use a binary rewriting technique [11] to trace

all file system and interprocess communication calls. We

chose such a user space solution as it allows tracking

high-level calls in the Win32 API.

When a user first logs in, our implementation in-

struments all running processes, interposing on our

candidate set of system calls as listed in Table 1. It

4



File System Operations Opening and closing files (e.g.,

CreateFile, __lopen, __lcreat, CloseHandle); reading

and writing files (e.g., ReadFile,WriteFile, ReadFileEx,

…); moving, copying, and unlinking files (e.g.,Move-

File, CopyFile, DeleteFile, …).

IPC Operations Clipboard (DDE), mailslots, named

pipes.

Other Process creation and destruction: CreateProcess, Ex-

itProcess.

Not interposed Sockets, data copy (i.e., WM_COPYDATA

messages), file mapping (a.k.a. shared memory), Mi-

crosoft RPC, COM.

Table 1. System calls which our tool interposes on. We trace

both the ANSI and Unicode versions of these calls.

also hooks the CreateProcess call, which will instrument

any subsequently launched executables. Care was

required to not falsely trip anti-spyware tools. Each

instrumented process reports its system call behavior

to our background collection daemon, which uses idle

CPU seconds, via the mailslots IPC mechanism. For

performance reasons, each process amortizes 32K or

30 seconds worth of events across a single message.

The collection daemon contemporaneously creates two

relation graphs: one using temporal locality (§3.1.1) and

one using causality (§3.1.2).

If a file is deleted, its node in the relation graph be-

comes a zombie: it relinquishes its name but maintains

its current weight. The basic BFS algorithm uses a zom-

bie’s weight in its calculations, but a zombie can never

be returned in the search result list. We currently do not

prune zombies from the relation graph.

Content indexing is done using Google Desktop

Search (GDS) with its exposed API. We expect GDS to

use state-of-the-art information retrieval techniques to

conduct its searches. We chose GDS over other content

indexing tools, such as Indri [1], because of its support

for more file types. All queries enter through our inter-

face: only GDS’s indexing component remains active,

its search interface is turned off. GDS also indexes email

and web pages, but we prune these from the result set.

In the future, we intend to examine email and web work

habits and metadata to further enhance search.

A complication arises, however. GDS allows sorting

by relevance, but it does not expose the actual relevance

scores. These are necessary as they form the initial values

of the basic BFS algorithm (§3.2). We use:

ψ(i) =
2(n − i)

n(n + 1)
(2)

to seed the initial values of the algorithm. Here, n is the

total number of results for a query, and i is the result’s

position in the result list. Equation (2) is a strict linear

progression with relevance values constrained such that

Figure 3. A screenshot of the search interface.

the sum of the values is unity, roughly matching the re-

sults one would expect from a TF/IDF-type system [3].

Soules [20] found that equation (2) performs nearly as

well as real relevance scores: (2) produces a 10% im-

provement across all recall levels in Soules’s study, while

real relevance scores produce a 15% improvement.

Users interact with our search system through an icon

in the system tray. When conducting a search, a frame,

shown in Figure 3, appears, allowing the user to specify

her query keywords in a small text box. Search results

in batches of ten appear in the upper part of the frame.

A snippet of each search result, if available, is presented,

along with options to preview the item before opening.

Previewing is supported by accessing that file type’s Ac-

tiveX control, as is done in web browsers.

In most desktop search applications, ours included, the

search system is available to users immediately after in-

stallation. Because the content indexer works during idle

time and little to no activity state has been captured to

build our relation graph when first installed, search re-

sults during this initial indexing period are usually quite

hapless. We warn users that during this initial indexing

period that their search results are incomplete.

Our implementation uses a relation window of 30 sec-

onds and basic BFS with a weight cutoff of 0.1% and pa-

rameters P = 3 and α = 0.75. These parameters were

validated by Soules and Ganger [21].

To prevent excessively long search times, we restrict

the context-enhancing phase to 5 seconds and return in-

termediate results from basic BFS. Although, as shown

in our evaluation (§5.3.3), we rarely hit this limit. Due to

our unoptimized implementation, we expect a commer-

cial implementation to perform slightly better than our

results would suggest.

5 User Study/Evaluation

Our evaluation has four parts: first, we explain the impor-

tance of conducting a user study as our primary method

5



of evaluation. Second, we describe a controlled trial cou-

pled with a rating task to assess user satisfaction. The

results indicate that our causality algorithm is indeed an

improvement over content-only indexing, while temporal

locality is statistically indistinguishable. Third, we eval-

uate the time and space overheads of our causality algo-

rithm, finding that both are reasonable. Fourth, we dissect

user elicited feedback of our tool.

5.1 Experimental Approach

Traditional search tools use a corpus of data where

queries are generated and oracle result sets are con-

structed by experts [3]. Two metrics, precision

(minimizing false positives) and recall (minimizing false

negatives) are then applied against this oracle set for

evaluation.

Personal file search systems, however, are extremely

difficult to study in the laboratory for a variety of rea-

sons. First, as these systems exercise a user’s own con-

tent, there is only one oracle: that particular user. All as-

pects of the experiment, including query generation and

result set evaluation, must be completed by the user with

their own files. Second, a user’s search history and cor-

pus is private. Since the experimenter lacks knowledge of

each user’s data, it’s nearly impossible to create a generic

set of tasks that each user could perform. Third, study-

ing context-enhanced search is further complicated by the

need to capture a user’s activity state for a significant

length of time, usually a month or more, to develop our

dynamic indices—an impractical feat for an in-lab exper-

iment.

In lieu of these difficulties with in-lab evaluation,

Soules and Ganger [21] constructed a corpus of data

by tracing six users for a period of six months. At the

conclusion of their study, participants were asked to

submit queries and to form an oracle set of results for

those queries. Since each user must act as an oracle for

their system, they are loathe to examine every file on

their machine to build this oracle. Instead, results from

different search techniques were combined to build a

good set of candidates, a technique known as pooling [3].

Each search system can then be compared against each

oracle set using precision and recall.

While an excellent initial evaluation, such a scheme

may exhibit observational bias: users will likely alter

their behavior knowing their work habits are being

recorded. For instance, a user may be less inclined to

use her system as she normally would for she may wish

to conceal the presence of some files. It is quite tough

to find users who would be willing to compromise their

privacy by sharing their activity and query history in

such a manner.

Further, to generate an oracle set using pooling, we

need a means to navigate the result space beyond that re-

turned from content-only search. That is, we need to use

results from contextual indexing tools to generate the ad-

ditional pooled results. However, the lack of availability

of alternative contextual indexing tools means that pool-

ingmay be biased toward the contextual search tool under

evaluation, as that tool is the only one generating the extra

pooled results.

We also care to evaluate the utility of our tool beyond

the metrics of precision and recall. Precision and recall

fail to gauge the differences in orderings between sets of

results. That is, two identical sets of results presented

in different order will likely be qualitatively very differ-

ent. Further, while large gains in mean average precision

are detectable to the user, nominal improvements remain

inconclusive [2]. We would like a more robust measure-

ment that evaluates a user’s perception of search quality.

For these reasons, we conduct a user study and deploy

an actual tool participants can use. First, we run a pre-

post measures randomized controlled trial to ascertain if

users perceive end-to-end differences between content-

only search and our causality algorithm with basic BFS.

Second, we conduct a repeated measures experiment to

qualitatively measure search quality: we ask users to rate

search orderings of their previously executed queries con-

structed by content-only search and of results from our

different dynamic techniques.

5.1.1 Background

We present a terse primer here on the two techniques we

use in our user study. For more information on these

methods, the interested reader should consult Bernard [4]

or Krathwohl [14].

A pre-post measures randomized controlled trial is a

study in which individuals are allocated at random to re-

ceive one of several interventions. One of these inter-

ventions is the standard of comparison, known as the

“control,” the other interventions are referred to as “treat-

ments.” Measurements are taken at the beginning of the

study, the pre-measure, and at the end, the post-measure.

Any change between the treatments, accounting for the

control, can be inferred as a product of the treatment. In

this setup, the control group handles threats to validity;

that any exhibited change is caused by some other event

than the treatment. For instance, administering a treat-

ment can produce a psychological effect in the subject

where the act of participation in the study results in the

illusion that the treatment is better. This is known as the

placebo effect.

Consider that we have a new CPU scheduling algo-

rithm that makes interactive applications feel more re-

sponsive and we wish to gauge any user-perceived dif-

ference in performance against the standard scheduler.

To accomplish this, we segment our population randomly

into two groups, one which uses the standard scheduler,

6



the control group, and the other receives our improved

scheduler, the treatment group. Neither group knows

which one they belong to. At the beginning of the study,

the pre-measure, we ask users to estimate the responsive-

ness of their applications with a questionnaire. It’s tradi-

tional to use a Likert scale in which respondents specify

their level of agreement to a given statement. The num-

ber of points on an n-point Likert scale corresponds to an
integer level of measurement, where 1 to n represents the

lowest to highest rating. At the end of the study, the post-

measure, we repeat the same questionnaire. If the pre-

and post-measures in the treatment group are statistically

different than the pre- and post-measures in the control

group, we can conclude our new scheduler algorithm is

rated better by users.

Sometimes it is necessary or useful to take more than

one observation on a subject, either over time or over

many treatments if the treatments can be applied indepen-

dently. This is known as a repeated measures experiment.

In our scheduler example, wemay wish to first survey our

subject, randomly select an algorithm to use and have the

subject run the algorithm for some time period. We can

then survey our subject again and repeat. In this case, we

have more than one observation on a subject, with each

subject acting as its own control.

Traditionally, one uses ANOVA to test the statistical

significance of hypotheses among two or more means

without increasing the α (false positive) error rate that

occurs with using multiple t-tests. With repeated mea-

sures data, care is required as the residuals aren’t uni-

form across the subjects: some subjects will show more

variation on some measurements than on others. Since

we generally regard the subjects in the study as a ran-

dom sample from the population at large and we wish

to model the variation induced in the response by these

different subjects, we make the subjects a random effect.

An ANOVA model with both fixed and random effects is

called a mixed-effects model [19].

5.1.2 Randomized Controlled Trial

In our study, we randomly segment the population into

a control group, whose searches return content-only re-

sults, and a treatment group, whose searches return re-

sults reordered and extended by basic BFS using a rela-

tion graph made with the causality algorithm.

To reduce observational bias and protect privacy, our

tool doesn’t track a user’s history, corpus, or queries,

instead reporting aggregate data only. During recruit-

ment, upon installation, andwhen performing queries, we

specifically state to users that no personal data is shared

during our experiment. We hope this frees participants

to use their machines normally and issue queries without

hindrance.

The interface of both systems is identical. To prevent

the inefficiency of our unoptimized context-enhancing

implementation from unduly influencing the treatment

group, both groups run our extended search, but the con-

trol group throws away those results and uses content-

only results exclusively.

The experiment is double-blind: neither the partici-

pants nor the researchers knew who belonged to which

group. This was necessary to minimize the observer-

expectancy effect; that unconscious bias on the part of

the researchers may appear during any potential support

queries, questions, or follow ups. The blinding process

was computer controlled.

Evaluation is based on pre- and post-measure question-

naires where participants are asked to report on their be-

havior using 5-point Likert scale questions. For exam-

ple, “When I need to find a file, it is easy for me to do

so quickly.” Differences in the pre- and post-measures

against the control group indicate the overall effect our

causality algorithm has in helping users find their files.

We also ask several additional questions during the pre-

survey portion to understand the demographics of our

population and during the post-survey to elicit user feed-

back on our tool.

We pre-test each survey instrument on a small sam-

ple of a half-dozen potential users who are then excluded

from participating in our study. We encourage each pre-

tester to ask questions and utilize “think-alouds,” where

the participant narrates her thought process as she’s tak-

ing the survey. Pre-testing is extremely crucial as it weeds

out poorly worded, ambiguous, or overly technical ele-

ments from surveys. For example, the first iteration of

our survey contained the question, “I often spend a non-

trivial amount of time looking for a file on my computer.”

Here, the word “non-trivial” is not only equivocal, it is

confusing. A more understandable question would be to

set an exact time span: “I often spend 2 minutes or more

a day looking for a file on my computer.”

We also conducted a pilot study with a small purposive

sample of colleagues who have trouble finding their files.

This allowed us to vet our tool and receive feedback on

our study design. Naturally, we exclude these individuals

and this data from our overall study.

5.1.3 Rating Task

We wish to evaluate the n different dynamic algorithms

against each other. Segmenting the study population into

n randomized groups can make finding and managing

a large enough sample difficult. More importantly, as

we will show, controlled experiments on broad measure-

ments for personal search behavior are statistically indis-

tinguishable between groups; we believe users have dif-

ficultly judging subtle differences in search systems.

To that end, we also perform a repeated measures ex-

periment. As we can safely run each algorithm indepen-

dently, we contemporaneously construct relation graphs

using both the temporal locality and causality algorithms

7



in both groups. At the conclusion of the study, we choose

up to k queries at random that were previously success-

fully executed by the user and re-execute them. Differ-

ent views, in random order, showing each different algo-

rithm’s results are presented; the user rates each of them

independently using a 5-point Likert scale. We use these

ratings to determine user-perceived differences in each

search algorithm.

We define “successfully executed” to be queries where

the user selected at least one result after execution. To

prevent users from rating identical, singular result lists—

which would give us no information—we further limit

the list of successful queries by only considering queries

where at least one pair of algorithms differs in their or-

derings. With this additional constraint, we exclude an

additional 2 queries from being rated.

The rating task occurs at the end of the study and not

immediately after a query as we eschew increasing the

cognitive burden users experience when searching. If

users knew they had to perform a task after each search,

theymight avoid searches because they anticipate that ad-

ditional task. Worse, they might perfunctorily complete

the task if they are busy. In a longer study, it would be

beneficial to perform this rating task at periodic intervals

to prevent a disconnect with the query’s previous intent in

the user’s mind. Previous work has shown a precipitous

drop in a user’s ability to recall computing events after

one month [6].

Finally, we re-execute each query rather than present

results using algorithm state from when the query was

first executed. The user’s contextual state will likely be

disparate between when the query was executed and at

the time of the experiment; any previous results could be

invalid and may potentially cause confusion.

In our experiment, we chose k=7 queries to be rated by
the user. We anecdotally found this to provide a reason-

able number of data points without incurring user fatigue.

Four algorithms were evaluated: content-only, causal-

ity, temporal locality and a “random-ranking” algorithm,

which consists of randomizing the top 20 results of the

content-only method.

5.2 Experimental Results

Our study ran during June and July 2006, starting with

75 participants, all undergraduate or graduate students at

the University ofMichigan, recruited from non-computer

science fields. Each participant was required to run our

software for at least 30 days, a period allowing a rea-

sonable amount of activity to be observed while still

maintaining a low participant attrition rate. Of the ini-

tial 75 participants, 27 (36%), consisting of 15 men and

12 women, completed the full study. This is more than

four times the number of Soules and Ganger [21]. Those

(a)

Δ
ra

tin
g 

(L
ik

er
t)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ctl trt

(b)

ra
tin

g 
(L

ik
er

t)

1

2

3

4

5

ctl trt

(c)

ra
tin

g 
(L

ik
er

t)

1

2

3

4

5

ctl trt

Figure 4. Box-and-whisker plot comparison between control

and treatment groups on: (a) Difference between pre- and post-

measures 5-point Likert rating of “When I need to find a file, it

is easy for me to do so quickly.” While the treatment group has

a slightly higher median difference, the results are statistically

indistinguishable. (b) 5-point Likert rating of “I would likely

put less effort in organizing my files if I had this tool available.”

(c) 5-point Likert rating of “This tool should be essential for any

computer.” (N = 27)

who successfully completed the study received modest

compensation.

To prevent cheating, our system tracks its installation,

regularly reporting if it’s operational. We are confident

that we identify users who attempt to run our tool for

shorter than the requisite 30 days. Further, to prevent

users from creating multiple identities, participants must

supply their institutional identification number to be com-

pensated. In all, we excluded 4 users from the initial 75

because of cheating.

5.2.1 Randomized Controlled Trial

Evaluating end-to-end effects, as in our controlled trial,

yields inconclusive results. Figure 4 shows box-and-

whisker plots of 5-point Likert ratings for key survey

questions delineated by control and treatment group. For

those unfamiliar: on a box-and-whiskers plot, the me-

dian for each dataset is indicated by the center dot, the

first and third quartiles, the 25th and 75th percentiles

respectively—the middle of the data—are represented by

the box. The lines extending from the box, known as the

whisker, represent 1.5 times this interquartile range and

any points beyond the whisker represent outliers. The

box-and-whiskers plot is a convenient method to show

not only the location of responses, but also their variabil-

ity.

Figure 4(a) is the pre- and post-measures difference

on a Likert rating on search behavior: “When I need to

find a file, it is easy for me to do so quickly.” Sub fig-

ures (b) and (c) are post-survey questions on if the tool

8



rank of item

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

control
treatment

Figure 5. c.d.f. of the rank of files opened by users after a

search.

session length (# of queries)

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

control
treatment

Figure 6. Session length c.d.f.

would change their behavior in organizing their files (i.e.,

“I would likely put less effort in organizing my files if I

had this tool available”) or whether this tool should be

bundled as part of every machine (i.e., “this tool should

be essential for any computer”). With all measures, the

results are statistically insignificant between the control

and treatment groups (t25 = −0.2876, p=0.776; t25 =

0.0123, p=0.9903; t25 = −0.4995, p=0.621, respec-
tively).

We also consider search behavior between the groups.

Figure 5 shows the rank of the file selected after perform-

ing a query. Those in the treatment group select items

higher in the list than those in the control group, although

not significantly (t51 = 1.759; p=0.0850).
We divide query execution into sessions, each session

representing a series of semantically related queries. Fol-

lowing Cutrell et al. [5], we define a session to comprise

queries that have an inter-arrival rate of less than 5 min-

utes. The session length is the number of queries in a

session, or, alternatively, the query retry rate. As Fig-

ure 6 shows, the treatment group has a shorter average

session length (t97 = 2.136, p=0.042), with geometric

algorithm

ra
tin

g 
(L

ik
er

t)

1
2
3
4
5

N C T R

n:7

U1

N C T R

n:1

U2

N C T R

n:1

U3

N C T R

n:1

U4
n:1

U5

n:4

U6

n:1

U7

1
2
3
4
5

n:3

U8
1
2
3
4
5

n:1

U9

n:1

U10

n:3

U11

n:2

U12
n:1

U13

n:3

U14

n:2

U15

1
2
3
4
5

n:2

U16

Figure 7. Box-and-whisker plots of each algorithm’s ratings,

delineated by subject. The algorithms are: content-only (“N”),

causality (“C”), temporal locality (“T”), and random (“R”).

mean session lengths of 1.30 versus 1.66 queries per ses-

sion, respectively. 13.5% and 19.0% of sessions in the

control and treatment groups, respectively, ended with a

user opening or previewing an item.

This data is, however, inconclusive. While at first blush

it may appear that with the causality algorithm users

are selecting higher ranked items and performing fewer

queries for the same informational need, it could be just

as well that users give up earlier. That is, perhaps users

fail to select lower ranked items in the treatment group

because those items are irrelevant. Perhaps users in the

treatment group fail to find what they’re looking for and

cease retrying, leading to a shorter session length. In

hindsight, it would have been beneficial to ask users if

their query was successful when the search window was

closed. If we had such data available, we could ascer-

tain whether shorter session lengths and opening higher

ranked items were a product of finding your data faster or

of giving up faster.

The lack of statistically significant end-to-end effects

stems from the relatively low sample size coupled with

the heterogeneity of our participants. To achieve statis-

tical significance, our study would require over 300 par-

ticipants to afford the standard type II error of β = 0.2
(power t-test,� = 0.2, σ = 0.877, α = 0.05). Attaining
such a high level of replication is prohibitively expensive

given our resources. Instead, our evaluation focuses on

our rating task.

5.2.2 Rating Task

The rating task yielded more conclusive results. 16 out of

our 27 participants rated an aggregate total of 34 queries,

9



an average of 2.13 queries per subject (σ=1.63). These
34 rated queries likely represent a better candidate selec-

tion of queries due to our “successfully executed” precon-

dition (§5.1.3): we only ask users to rate queries where

they selected at least one item from the result set for that

search. 11 participants failed to rate any queries: 3 users

failed to issue any, the remaining 8 failed to select at least

one item from one of their searches.

Those remaining 8 issued an average of 1.41 queries

(σ=2.48), well below the sample average of 6.74 queries

(σ=6.91). These likely represent failed searches, but it is
possible that users employ search results in other ways.

For example, the preview of the itemmight have been suf-

ficient to solve the user’s information need or the user’s

interest may have been in the file’s path. Of those queries

issued by the remaining 8, users previewed at least one

item 17% of the time but never opened the file’s contain-

ing directory through our interface. To confirm our sus-

picions about failed search behavior, again it would have

been beneficial to ask users as to whether their search was

successful.

Figure 7 shows a box-and-whiskers plot of each sub-

ject’s ratings for each of the different algorithms. Sub-

jects who rated no queries are omitted from the plot for

brevity. Some cursory observations across all subjects are

that the causality algorithm usually performs at or above

content-only, with the exception of subjects U3 and U16.

Temporal locality is on par or better than content-only for

half of the subjects, but is rated exceptionally poorly, less

than a 2, for a quarter of subjects (U3, U9, U13 and U16).

Surprisingly, while the expectation is for random to be ex-

ceedingly poor, it is often only rated a notch below other

algorithms.

Rigorous evaluation requires care as we have multiple

observations on the same subject for different queries—a

repeated measures experiment. Observations on different

subjects can be treated as independent, but observations

on the same subject cannot. Thus, we develop a mixed-

effects ANOVA model [19] to test the statistical signifi-

cance of our hypotheses.

Let yi jk denote the rating of the i-th algorithm by the

j-th subject for the k-th query. Our model includes three

categorical predictors: the subject (16 levels), the algo-

rithm (4 levels), and the queries (34 levels). For the sub-

jects, there is no particular interest in these individuals;

rather, the goal is to study the person-to-person variabil-

ity in all persons’ opinions. For each query evaluated by

each subject, we wish to study the query-to-query vari-

ability within each subject’s ratings. The algorithm is a

fixed effect (βi ), each subject then is a random effect (ζ j )

with each query being a nested random effect (ζ jk). An-

other way to reach the same conclusion is to note that if

the experiment were repeated, the same four algorithms

would be used, since they are part of the experimental de-

95% Conf. Int.

Algorithm βi Lower Upper p-value†

Content only 3.545 3.158 3.932

Causality 4.133 3.746 4.520 0.0042

Temp. locality 3.368 2.982 3.755 0.3812

Random 2.280 1.893 2.667 <0.0001

σ1 0.3829 0.1763 0.8313

σ2 0.4860 0.2935 0.8046

σ 0.8149 0.7104 0.9347
† In comparison to content-only.

Table 2. Maximum likelihood estimate of the mixed-effects

model given in equation (3).

sign, but another random sample would yield a different

set of individuals and a different set of queries executed

by those individuals. Our model therefore is:

yi jk = βi + ζ j + ζ jk + εi jk (3)

ζ j ∼ N (0, σ 2
1 ) ζ jk ∼ N (0, σ 2

2 ) εi jk ∼ N (0, σ 2)

A maximum likelihood fit of (3) is presented in

Table 2. Each βi represents the mean across the popu-

lation for algorithm i . The temporal locality algorithm

is statistically indistinguishable from content-only

search (t99 = −0.880, p=0.3812), while the causal-

ity algorithm is rated, on average, about 17% better

(t99 = 2.93, p=0.0042). Random-ranking is rated about

36% worse on average (t99 = −6.304, p<0.0001).
Why is temporal locality statistically indistinguishable

from content-only? Based on informal interviews, we

purport the cause of these poor ratings is temporal local-

ity’s tendency to build relationships that exhibit post-hoc

errors: the fallacy of believing that temporal succession

implies a causal relation.

For example, U16 was a CAD user that only worked

on a handful of files for most of the tracing period (a de-

sign she was working on). The temporal locality algo-

rithm caused these files to form supernodes in the relation

graph; every other file was related to them. Under results

generated by the temporal locality algorithm, each of her

queries included her CAD files bubbled to the top of the

results list. U9 was mostly working on his dissertation

and every file, as well as some of his music, was lightly

related to each other. The temporal locality algorithm

created a relation graph with 21,376 links with geometric

mean weight of 1.48 (σl=0.688); the causality algorithm,

an order of magnitude fewer, with 1,345 links and a ge-

ometric mean weight of 9.79 (σl=1.512). In his case, it

appears that the temporal algorithm naïvely creates many

lightly-weighted superfluous relations compared with the

causality algorithm.

A user’s work habits will affect the utility of prove-

nance analysis techniques. Temporal locality’s tendency

to generate large numbers of lightweight false-positive

relationships can be detrimental in many cases, mak-

10



ing more conservative techniques such as causality more

broadly applicable.

The random reordering shares equivalent precision and

recall values as content-only search, but is rated about

35.7% worse on average. We expect a random ordering

to do phenomenally worse, but hypothesize that personal

search tools are still in their infancy. That is, attention in

the research community has been placed on web search,

and only recently has desktop search become a priority.

There is appreciable room for improvement. It may also

be that users are simply content with having their desired

result on the first page and are apathetic to each result’s

relative ordering within that page. More work is required

to understand a user’s perception of search orderings.

We further analyze any interactions between other co-

variates such as the demographics of participants or user

features (e.g., size of disk, number of files, folder depth).

We find these covariates either to be statistically insignif-

icant or to overfit our model.

5.3 Performance

Our results indicate that our causality algorithm increases

user satisfaction of personal file search. However, such a

system is only effective if minimum additional system re-

sources are required for building, storing, and traversing

the relation graph created by this algorithm. We eschew

discussion of content indexing overheads as these are al-

ready known [16].

5.3.1 Tracing Performance

We measure the impact building the relation graph has

on foreground performance with the Postmark synthetic

benchmark [13]. Postmark is designed to measure file

system performance in small-file Internet server applica-

tions such as email servers. It creates a large set of con-

tinually changing files, measuring the transaction rates

for a workload of many small reads, writes, and deletes.

While not representative of real user activity in desktop

systems, Postmark represents a particularly harsh setup

for our collection daemon: many read and write events to

a multitude of files inside a single process. Essentially,

Postmark’s workload creates a densely-connected rela-

tion graph.

We run 5 trials of Postmark, with and without trac-

ing, with 50,000 transactions and 10,000 simultaneous

files on an IBM Thinkpad X24 laptop with a 1.13 GHz

Pentium III-M CPU and 640 MB of RAM, a modest ma-

chine by today’s standards. The results are shown in Fig-

ure 8(a). Under tracing, Postmark runs between 7.0% and

13.6% slower (95% conf. int.; t8=7.211, p<0.001). Fig-
ure 8(b) shows a c.d.f. of Postmark’s transaction times

with and without tracing across a single run. There is a

relatively constant attenuation under tracing, which re-

flects the IPC overhead of our collection daemon and the

off on
tracing

(a)

tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

0

10

20

30

40

50

transaction time (ms)
(b)

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

1 2 5 10 25 100

no tracing
tracing

Figure 8. (a) Comparison of running 5 trials of the Postmark

synthetic benchmark with and without tracing on. (b) c.d.f. of

transaction times for a single Postmark run when tracing is on

or off.

time

gr
ap

h 
si

ze
 (

M
B

)

0.1

1

4

16

64

256

1024

1 d 7 d 30 d 90 d 1 y 5 y

Causality
Temporal Locality

Figure 9. Relation graph growth curve for U3, the heaviest user.

additional disk utilization due to relation graph updates.

This additional slowdown caused by relation graph con-

struction is in line with other Win32 tracing and logging

systems [15].

5.3.2 Space Requirements

We examine the additional space required by our rela-

tion graphs. During the user study, the tool logged the

size of each relation graph every 15 minutes. Figure 9

shows relation graph growth over time for the heaviest

user in our sample, U3. Each relation graph grows lin-

early (r2 = 0.861 and r2 = 0.881 for causality and tem-

poral locality, respectively). While the worst case graph

growth is O(F2), where F is the number of files on a

user’s system, these graphs are generally very spare: most

files only have relationships to a handful of other files as

a user’s working set at any given time is very small. In

one year, we expect the causality relation graph for U3

to grow to about 44 MB; in five years, 220 MB. This is

paltry compared to the size of modern disks and repre-

sents an exceedingly small fraction of the user’s working

11



wall clock time (s)

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

combined
content−only phase
context−enhancing phase

Figure 10. c.d.f. of content-only phase, context-enhancing

phase, and combined wall clock times for queries issued dur-

ing the user study.

number of edges in relation graph

tim
e 

(s
)

0.5

1.0

1.5

2.0

2.5

3.0

0 5000 10000 15000 20000 25000

Graph Load
Basic BFS

Figure 11. For queries issued during a 6-month trace of the

author’s system: the time spent loading the relation graph and

the execution time of the basic BFS algorithm against the num-

ber of edges in the relation graph. (5 trials per query; standard

deviations were within 2% of the mean for each data point.)

set. These results suggest that relation graph size isn’t an

obstacle.

5.3.3 Search Performance

The time to answer a query must be within reasonable

bounds for users to find the system usable. In our imple-

mentation (§4), we bound the context-enhancing phase to

a maximum of 5 seconds.

For every query issued during the user study, we log the

elapsed wall clock time in the content-only and context-

enhancing phases. Figure 10 shows these results. Half

of all queries are answered within 0.8 seconds, three-

quarters within 2.8 seconds, but there is a heavy tail.

The context-enhancing phase takes about 67% of the en-

tire search process on average. We believe these current

search times are within acceptable limits.

Recall that the context-enhancing phase consists of

two distinct subphases: first, the loading of the rela-

Question μ σ

I would prefer an interface that shows more

information.

3.84 1.34

I find it easy to think of the correct search

keywords.

3.69 0.85

I would prefer if I could look over all my

machines.

3.46 1.39

This tool should be essential for any com-

puter.

3.30 1.25

I like the interface. 3.15 1.40

I would prefer if my email and web pages are

included in the search results.

3.00 1.58

I would likely put less effort in organizing

my files if I had this tool available.

2.92 1.12

Table 3. Additional 5-point Likert ratings asked of treatment

group users at the end of the study period (N = 13).

tion graph, followed by execution of the basic BFS al-

gorithm (§3.2). To understand the performance impact

of these subphases, previous queries issued by the au-

thor were re-executed, for 5 trials each under a cold

cache, with the relation graph from a 6-month trace. Fig-

ure 11 shows the time spent for each query based on

the number of edges from the relation graph loaded for

that query. For non-empty graphs, loading the relation

graph took, on average, between 3.6% and 49.9% longer

(95% conf. int.) than the basic BFS subphase (paired

t15 = −2.470, p=0.026).
Both loading the relation graph and basic BFS exe-

cution support linear increase models (r2 = 0.948 and

r2 = 0.937, respectively). This is apparent as each sub-

phase requires both �(F2) space and time, where F is

the number of files on a user’s system. As these are lower

bounds, the only way to save space and time would be

to ignore some relationships. If we could predict a priori

which relationships were most relevant, we could calcu-

late, at the expense of accuracy, equation (1a) for those

pairs. Further, we could cluster those relevant nodes to-

gether on disk, minimizing disk I/Os during graph reads.

5.4 User Feedback

During the post-survey phase of our study, our question-

naire contained additional 5-point Likert ratings. A tab-

ulation of subject’s responses for the treatment group are

shown in Table 3. While it’s difficult to draw concrete an-

swers due to the high standard deviations, we can develop

some general observations.

An area for improvement is the user interface. Our

results are presented in a list view (Figure 3), but using

more advanced search interfaces, such as Phlat [5], that

allow filtering through contextual cues may be more use-

ful. Different presentations, particularly timeline visual-

izations, such as in Lifestreams [9], may better harness

users’ memory for their content. There is a relatively

strong positive correlation (ρ = 0.698) between liking

12



number of queries

nu
m

be
r 

of
 u

se
rs

0

1

2

3

4

0 5 10 15 20 25 30 35

Figure 12. Distribution of the number of queries among users.

the interface and finding the tool essential; a better inter-

face will likely make the tool more palatable for users.

Based on informal interviews, we found that partici-

pants used our search tool as an auxiliary method of find-

ing content: they first look through their directory hierar-

chy for a particular file, switching to keyword search after

a few moments of failed hunting. Participants neglect to

use our search tool as a first-class mechanism for finding

content. A system that is integrated into the OS, includ-

ing availability from within application “open” dialogs,

may cause a shift in user’s attitudes toward using search

to find their files.

We found it surprising that users wished to exclude

email and web pages from their search results; two-thirds

of users rate this question a three or below. Our consul-

tations reveal that many of these users dislike a homo-

geneous list of dissimilar repositories and would rather

prefer the ability to specify which repository their infor-

mation need resides in. That is, a user knows if they’re

searching for a file, email or web page, let them easily

specify which. We needn’t focus on mechanisms to ag-

gregate heterogeneous forms of context spread across dif-

ferent repositories into a unifying search result list, but to

simply provide an easy mechanism to refine our search to

a specific repository.

6 Personal Search Behavior

Finally, we explore the search behavior of our sample

population. Recall that, for privacy reasons, we do not

log any information about the content of users’ indices or

search results.

Our population issued 182 queries; the distribution

per user is shown in Figure 12. The average number of

queries issued per user is 6.74 (σ=6.91). Most queries,

91%, were fresh, having never been issued before. About

9% of search terms were for filenames. Since Windows

XP lacks a rapid search-by-filename tool similar to

UNIX’s slocate, users were employing our tool to find

time since installation

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

60 s 1 h 1 d 7 d 30 d

Figure 13. c.d.f. of when queries are issued after installation.

time

fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

60 s 1 h 1 d 7 d 30 d 1 y

last accessed
last accessed*
last modified
last modified*

Figure 14. c.d.f. of last access and modification times of items

selected from the results list. The starred versions exclude

searches conducted during the first day after installation.

the location of files they already knew the name of.

Most queries were very short, averaging 1.16 words

(σ=0.462), slightly shorter than the 1.60 and 1.59 words
reported for Phlat [5] and SIS [8] respectively.

Figure 13 shows when queries are issued after instal-

lation. A sizable portion of queries are issued relatively

soon after installation as users are playing with the tool.

Even though we warn users that search results are ini-

tially incomplete because the content indexer has not built

enough state and the relation graph is sparse (§4), it may

be prudent to disallow searching until a reasonable index

has been built as not to create an unfavorable initial im-

pression.

Figure 14 shows the last access time and last modifi-

cation times of items opened after searching. The starred

versions represent last access and modification times of

queries issued at least a day after installation. During

the first day, users might be testing the tool against re-

cent work and, hence, recently accessed files. Anecdo-

tal evidence of this effect can be observed by the shifted

last accessed curve. After the warm-up period, half of

13



all files selected were accessed within the past 2 days. It

appears users are employing our tool to search for more

than archival data.

7 Conclusions & Future Work

By measuring users perception of search quality with

our rating task (§5.2.2), we were able to show that us-

ing causality (§3.1.2) as the dynamic re-indexing compo-

nent increases user satisfaction in search, being rated 17%

higher than content-only indexing or temporal locality,

on average over all queries. While our contextual search

mechanism lacked any significant increases in end-to-

end effects in our randomized controlled trial (§5.2.1),

this stemmed from an insufficiently large sample size.

It is prohibitively expensive to secure such high levels

of replication, making our rating task a more appropri-

ate methodology for evaluating personal search systems.

These results validate that using the provenance of files

to reorder and extend search results is an important com-

plement to content-only indexing for personal file search.

There is still considerable future work in this area.

While we find temporal locality (§3.1.1) infelicitous in

building a contextual index, one should not dismiss tem-

poral bounds altogether. We are investigating using win-

dow focus and input flows in delineating tasks to create

temporal boundaries.

Further, our tool only has limited access: a user’s local

file system. We could leverage electronic mail, their other

devices andmachines, and distributed file systems, stitch-

ing context from these stores together to provide further

benefit. Since these indices may span the boundaries of

multiple machines and administrative domains, we must

be careful to maintain user privacy and access rights. We

are investigating these and other avenues.

Finally, the tradition in the OS community, and we

have been as guilty of this as any, has been to evaluate

systems on a small number of users—usually departmen-

tal colleagues known to the study author. These users are

generally recognized as atypical of the computing popu-

lation at large: they are expert users. As the community

turns its attention away from performance and toward is-

sues of usability and manageability, we hope our work

inspires the OS community to consider evaluating their

systems using the rigorous techniques that have been vet-

ted by other disciplines. User studies allow us to deter-

mine if systems designed and tested inside the laboratory

are indeed applicable as we believe.

Acknowledgements

We’d like to thank Mark Ackerman for his help with

our user study. This research was supported in part by

the National Science Foundation under grant number

CNS-0509089.

References

[1] Nasreen Abdul-Jaleel, James Allan, W. Bruce Croft, Fernando

Diaz, Leah Larkey, Xiaoyan Li, Donald Metzler, Mark D.

Smucker, Trevor Strohman, Howard Turtle, and Courtney Wade.

UMass at TREC 2004: Notebook. In TREC 2004, pages 657–670,

2004.

[2] James Allan, Ben Carterette, and Joshua Lewis. When will in-

formation retrieval be “good enough”? In SIGIR 2005, pages

433–440, Salvador, Brazil, 2005.

[3] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-

mation Retrieval. ACM Press, New York, 1999.

[4] H. Russell Bernard. Social Research Methods. Sage Publications

Inc., 2000.

[5] Edward Cutrell, Daniel C. Robbins, Susan T. Dumais, and Raman

Sarin. Fast, flexible filtering with Phlat—personal search and or-

ganization made easy. In CHI 2006, pages 261–270, Montréal,

Québec, Canada, 2006.

[6] Mary Czerwinski and Eric Horvitz. An investigation of memory

for daily computing events. In HCI 2002, pages 230–245, Lon-

don, England, 2002.

[7] John R. Douceur and William J. Bolosky. A large-scale study of

file-system contents. In IMC 1999, pages 59–70, 1999.

[8] Susan T. Dumais, Edward Cutrell, J. J. Cadiz, Gavin Jancke, Ra-

man Sarin, and Daniel C. Robbins. Stuff I’ve Seen: A system for

personal information retrieval and re-use. In SIGIR 2003, pages

72–79, Toronto, Ontario, Canada, 2003.

[9] Scott Fertig, Eric Freeman, and David Gelernter. Lifestreams: An

alternative to the desktop metaphor. InCHI 1996, pages 410–411,

Vancouver, British Columbia, Canada, April 1996.

[10] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and

James W. O’Toole. Semantic file systems. In SOSP 1991, pages

16–25, Pacific Grove, CA, October 1991.

[11] Galen Hunt and Doug Brubacher. Detours: Binary interception of

Win32 functions. In 3rd USENIXWindows NT Symposium, pages

135–143, Seattle, WA, USA, 1999.

[12] David Huynh, David R. Karger, and Dennis Quan. Haystack: A

platform for creating, organizing and visualing information using

RDF. In Semantic Web Workshop, 2002.

[13] Jeffrey Katcher. Postmark: A new filesystem benchmark. Tech-

nical Report 3022, Network Appliance, October 1997.

[14] David R. Krathwohl. Methods of Educational and Social Science

Research: An Integrated Approach. Waveland Inc., 2nd edition,

2004.

[15] Jacob R. Lorch and Alan Jay Smith. The VTrace tool: building a

system tracer for Windows NT and Windows 2000. MSDN Mag-

azine, 15(10):86–102, October 2000.

[16] Donald Metzler, Trevor Strohman, Howard Turtle, and W. Bruce

Croft. Indri at TREC 2004: Terabyte Track. In TREC 2004, 2004.

[17] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun,

andMargo Seltzer. Provenace-aware storage systems. InUSENIX

2006, pages 43–56, Boston, MA, USA, 2006.

[18] Nuria Oliver, Greg Smith, Chintan Thakkar, and Arun C. Suren-

dran. SWISH: Semantic analysis of window titles and switching

history. In IUI 2006, pages 194–201, Sydney, Australia, 2006.

[19] José C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in

S and S-Plus. Springer, New York, 2000.

[20] Craig A. N. Soules. Using context to assist in personal file re-

trieval. PhD thesis, Carnegie Mellon University, 2006.

[21] Craig A. N. Soules and Gregory R. Ganger. Connections: using

context to enhance file search. In SOSP 2005, pages 119–132,

Brighton, UK, 2005.

[22] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and

David R. Karger. The perfect search engine is not enough: a study

of orienteering behavior in directed search. In CHI 2004, pages

415–422, 2004.

14


