
Appears in Proceedings of the First International Conference on Autonomic Computing (ICAC-04).
New York, NY. May 2004.

File classification in self-* storage systems

Michael Mesnier, Eno Thereska, Gregory R. Ganger
Carnegie Mellon University

Daniel Ellard, Margo Seltzer
Harvard University

Abstract

To tune and manage themselves, file and storage sys-
tems must understand key properties (e.g., access pattern,
lifetime, size) of their various files. This paper describes
how systems can automatically learn to classify the prop-
erties of files (e.g., read-only access pattern, short-lived,
small in size) and predict the properties of new files, as they
are created, by exploiting the strong associations between
a file’s properties and the names and attributes assigned
to it. These associations exist, strongly but differently, in
each of four real NFS environments studied. Decision tree
classifiers can automatically identify and model such as-
sociations, providing prediction accuracies that often ex-
ceed 90%. Such predictions can be used to select storage
policies (e.g., disk allocation schemes and replication fac-
tors) for individual files. Further, changes in associations
can expose information about applications, helping auto-
nomic system components distinguish growth from funda-
mental change.

1. Introduction

Self-* 1 infrastructures require a much better understand-
ing of the applications they serve than is currently made
available. They need information about user and application
behavior to select and configure internal policies, reconfig-
ure upon the addition of new users and applications, tune
the system, diagnose performance dips, and in general, “be
self-*.” Current applications expose little or no informa-
tion explicitly, making automation of decision-making and
planning extremely difficult.

Despite the need, one cannot expect application writers,
users, or system administrators to provide the necessary tun-
ing information. Exposing hints has proved to be too te-
dious and error prone for programmers, despite years of re-
search in the software engineering and operating systems
communities. Moreover, the same complexity issues that
push for self-* infrastructures preclude requiring users and

1Pronounced ‘self-star,’ this term is a play on the UNIX shell wild char-
acter ‘*,’ encompassing self-managing, self-configuring, self-tuning, etc.

administrators to generate such information. The informa-
tion must be learned by the infrastructure.

This paper explores techniques for one sub-problem of
this large space: helping file and storage systems automati-
cally classify and predict the properties of files (e.g., access
pattern, lifespan, and size). We build on our observation that
file properties are often strongly associated with file names
and attributes (e.g., owner, creation time, and permissions)
[5], meaning that users and application writers are implicitly
providing hints simply by organizing their data. These as-
sociations can be used to predict a file’s properties as early
as when it is created. The key, of course, is to extract and
verify these associations automatically.

These implicit hints, or associations, can be used to se-
lect policies and parameter settings for each file as it is cre-
ated. As one example, popular read-mostly files might be
replicated several times to provide opportunities for load
spreading [12] and disk service time reduction [29]. As an-
other, large, sequentially-accessed files might be erasure-
coded to more efficiently survive failures [26]. Model-
ing associations may also provide value on a larger scale.
In particular, self-* components (or system administrators)
can gain intuition into how a system is being used (e.g.,
which files are write-only), and changes in association over
time offer a glimpse into changes in the applications being
served. For example, the emergence of new associations
may suggest that a substantive, long-term change in the
workload has occurred, rather than a transient one. Proac-
tively differentiating these cases may allow for a more effi-
cient provisioning and reallocation of resources.

This paper shows that decision tree models are an accu-
rate, efficient, and adaptable mechanism for automatically
capturing the associations between file attributes and prop-
erties in a self-* system. Specifically, we use month-long
traces from four real NFS environments to show that these
associations can be exploited to learn classification rules
about files (e.g., that a file ending in .log is likely to be write-
only). These rules are used to predict file properties, often
with 90% or better accuracy. The compression ratio of files
to rules can be greater than 4000:1 (i.e., one classification
rule for every 4000 files in a file system). In addition, we
show that the decision tree models can adapt to changing
workloads.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 motivates the use of de-
cision trees for file classification. Section 4 overviews the
Attribute-based Learning Environment (ABLE), our proto-
type file classification system. Section 5 compares train-
ing strategies for building trees and evaluates their longevity
(i.e., accuracy over time). Section 6 identifies some design
tradeoffs involved with a tree-based classification system.
Section 7 summarizes the contributions of this paper and
outlines some future work.

2. Related work

Given the importance, cost, and complexity of storage,
self-* storage systems are a target for many researchers [7,
10, 27]. Storage is often responsible for 40–60% of the cap-
ital costs and 60–80% of the total cost of ownership [15] of
a data center. In fact, Gartner and others have estimated the
task at one administrator per 1–10 terabytes [8]. As a result,
many research groups are targeting aspects of this general
problem space. Our work contributes one tool needed to
realize the self-* storage vision: the ability to predict file
properties.

Predictive models for file caching and on-disk layout
have been heavily researched. Intra-file access pattern clas-
sification learns the access pattern of blocks within a file
for on-disk layout and prefetching [16, 21]. Inter-file clas-
sification identifies relationships between files for whole-
file caching and prefetching [1, 14]. Additionally, per-file
usage statistics have been used to optimize the layout of
blocks on disk [24]. Our work complements these by learn-
ing to predict how a file will be used as soon as it is created,
rather than having to first observe it in use for a period of
time. This also results in building models for classes of files,
rather than for each individual file. All files within a class
can share the same model.

At the storage level, I/O workload characterization is
a long-standing problem [6], and a difficult one, because
many independent, per-application file streams are merged
together and are often indistinguishable. Our work pro-
vides storage systems with additional insight, by expos-
ing and predicting the collection of individual file patterns.
In addition to making predictions at the file system level
(e.g., in a file server), storage devices that understand file
attributes (e.g., object-based storage [19]) will be able to
make attribute-based predictions inside the storage device.

Machine learning tools developed by the AI commu-
nity [3] have matured to the point where they can be ef-
ficiently integrated into real systems. The following sec-
tion motivates the use of decision trees in the context of our
problem.

3. Classifying files in self-* systems

A file’s properties determine the best management poli-
cies for the file. Today, system administrators are respon-
sible for selecting and configuring these policies and, be-
cause of the complexity of file and storage systems, policies
are often assigned at the file system and storage level, not
on individual files. Administrators therefore use rules-of-
thumb for policy selection, often in anticipation of a certain
workload. There are two problems with this. First, setting
global policies often results in few files getting managed
optimally, as a generic choice is made. Second, workloads
are complex and variable, often preventing effective human
configuration. However, if one could distinguish between
different types of files, or classes, policies could be set on
each individual class (e.g., store the write-only class in a
volume optimized for writes).

Specifying the set of classes and policies will remain the
responsibility of a system designer. Classes are chosen to
distinguish the file properties that are relevant for policy as-
signment within an application. As examples, access pat-
terns may be read-only or write-only; file sizes may be large
or small; and lifetimes may be short-lived or long-lived.
However, automatically determining the classes of newly
created files and assigning polices (depending on the class)
can become the responsibility of a self-* storage system.

Ideally, the classes of a file should be determinable at
file creation time. If this is the case, then the appropriate
policies can be assigned up-front, and resources allocated
accordingly, thus reducing the need for per-file monitoring
and expensive file system reorganization. However, users
and applications almost never disclose the classes of a file
when it is created; a system must learn them.

Fortunately, files have descriptive attributes (e.g., names,
user and group IDs, permissions) available when the file
is created. These attributes, in certain combinations, often
indicate (implicitly) the classes of a file. The trick is to
determine which combinations determine which class. For
example, the file owner, application, and time the file is cre-
ated may be the determining factors in whether or not a file
will belong to the class of write-only files. Stated differ-
ently, because attributes are statistically associated with the
properties of a file [5], they can be used to predict the classes
to which a file will belong.

To make predictions, a self-* system must therefore learn
to automatically classify files. In our case, the training set
is a large collection, or sample, of files. There are two com-
mon ways to obtain a sample: from traces or from a run-
ning file system. For each file in the sample, we record
its attributes and its classes (which have already been de-
termined, by an offline analysis of the file’s evolution). To
simplify the problem, each classification takes on a binary
value: ‘+’ if the file is member of a class and ‘-’ otherwise.

File class Example policy
File size is zero Allocate with directory
� �size�16KB Use RAID1 for availability
File lifespan � 1sec Store in NVRAM
File is write-only Store in an LFS partition
File is read-only Aggressively replicate

Table 1. Classes we want to predict.

Attributes currently used in our models include the file’s
name, owner and group identifiers, the file type (directory,
file, or symbolic link), permissions (read, write, execute),
and the creation time (specified as morning, afternoon,
evening, or night). The classes include information about
the access pattern, lifetime and size properties. Specifically,
we want to predict whether or not a file will belong to any
of the classes shown in Table 1. These classes are repre-
sentative of the kinds of classes a system administrator or
application may specify, and that a self-* storage system
will need to learn in order to automate policy assignment.

From our training set, we want a classifier (or model)
to organize the files into clusters. A cluster contains files
with similar attributes that are also from the same class. For
example, the write-only class may be composed of two clus-
ters: files ending in .log and files with their read permissions
turned off.

Because not all attributes are relevant in determining
cluster membership, the largest job of a classifier is separat-
ing out the irrelevant attributes. The classifier must there-
fore learn rules to determine what cluster a file is in, and
these rules will be based on the most relevant attributes.
These same rules are then used to make predictions on new
files outside of the training set, sometimes referred to as a
test set. These will be new files, actually created in the sys-
tem. Using the clustering rules, the class of a new file is pre-
dicted to be the same as the class of other files in its cluster.
This is often referred to as a nearest neighbor problem, be-
cause a file is predicted to be similar to its neighbors, where
neighborhoods are defined by files with similar (relevant)
attributes.

Depending on the number and cardinalities of the at-
tributes used, thousands of clustering rules may be discov-
ered from a single day of traces. For example, suppose we
want to classify files based on two attributes: the group ID
and user ID. If there are 3 groups and 10 users, then a model
can have at most 30 rules (clusters), one for each combina-
tion of group and user. Moreover, some of the attributes are
filename components [5] (e.g., the file extension), of which
there are comparatively an unlimited number. Maintaining
a statistic for each attribute combination should be avoided.
We therefore need an efficient way to capture only those
attribute combinations that matter and to create rules that

generalize well to unseen examples.

3.1. Selecting the right model

Our file classification problem translates into these pri-
mary requirements that a model needs to satisfy:

� Handling of mixed-type attributes. File attributes
can take on categorical, discrete or continuous values.

� Handling of combinative associations. A file’s prop-
erties may depend on combinations of attributes. For
example, the expected file size may depend on both the
file name and creation time.

In addition, the following secondary requirements are
desirable, since we plan to use the model in a real system:

� Scalable. The model must be able to make predictions
quickly, even if this means a longer training time. In
addition, making the prediction must be inexpensive in
terms of computational and storage requirements.

� Dynamic. The model must efficiently adapt to new
workloads. Furthermore, by monitoring the addi-
tion/deletion of rules, autonomic components can
more easily track changes.

� Cost-sensitive. The model should be able to re-
duce the overall cost of mispredictions, by taking
application-specific cost functions into consideration
during training.

� Interpretable. Rules should be human-readable. Ad-
ministrators (or self-* components) may be curious
how the system is being used, and they may have ad-
ditional rules and hints that they could contribute.

Many algorithms have been developed in the machine
learning community. We chose to use decision trees. Trees
handle mixed attributes easily, and combinations of related
attributes (i.e., AND and OR) are naturally captured. More-
over, trees require minimal storage, quickly make predic-
tions, are easy to interpret, and can learn incrementally over
time [25].

We also considered algorithms such as Nearest Neigh-
bor, Naive Bayes, and Bayesian belief networks. These
models also handle mixed data types well and can learn
incrementally from new samples. However, each failed to
satisfy one or more of the other requirements. In particular,
nearest neighbor algorithms favor training time over pre-
diction time. Naive Bayes assumes that attributes are con-
ditionally independent of one another, and thus violates our
requirement to detect combinations of attributes. Bayesian
belief networks model attribute dependence in networks,
but require additional techniques to determine the structure
of the network. Further, none of these other models are easy

to interpret. More complex models, such as neural nets,
were not considered because of their slow training time and
inability to efficiently handle categorical attributes.

4. ABLE

The Attribute-based Learning Environment (ABLE) is
our prototype system for classifying files with decision
trees. ABLE currently obtains file samples from NFS
traces. However, the longer-term goal for this work is to ob-
tain samples and deploy predictors within a running self-*
storage system. ABLE is a crucial step toward this goal.

ABLE consists of three basic steps:

1. Obtain training data from NFS traces. For each
file, ABLE records its attributes (names, UID, GID,
type, permissions (UNIX mode), and creation time)
and classes shown in Table 1.

2. Induce a decision tree. For each file class, ABLE
trains a decision tree to classify each file in the train-
ing data. The result of this step is a set of predictive
models, one for each class, that can be used to make
predictions on newly created files.

3. Make predictions. We use the models to predict the
classes of files in a new set of NFS traces, and then
check whether the predictions are accurate.

Figure 1 illustrates the ID3 algorithm [20] ABLE uses to
induce a tree from sample data. In general, a decision tree
learning algorithm recursively splits the samples into clus-
ters, where each leaf node is a cluster. The goal is to cre-
ate clusters whose files have similar attributes and the same
classification. The purity of a leaf node (the percentage of
files correctly classified) is the metric used to build the tree.
Attributes that produce the purest clusters are placed further
up in the tree, and are ranked using a chi-squared test for
association [18]. The chi-squared test determines which at-
tributes are most associated with a given class. By splitting
on the most relevant attributes, a tree can quickly find the
naturally occurring clusters of files and ignore the irrelevant
attributes.

The tree is thus built top-down, until either all attributes
are used or all leaf nodes have reached a specified level
of purity. We elaborate on the tree building process and
relative strength of the attribute associations in previous
work [5]. After a tree is induced, we determine the class of
a file by querying the tree. The values of the file’s attributes
will determine its path, and ultimately direct the query to
a given leaf node. The classification of the file is that of
its leaf node (‘+’ or ‘-’), and is simply the most common
classification of all files in that cluster.

To obtain an estimate of the true error of the model, we
classify each file in the training set according to the tree and

.cshrc 18aa0 600 18b72

.cshrc 18b11 600 18b7e

.cshrc 18aac 600 18b28

.cshrc 18b58 600 18c6a

.cshrc 18abe 600 18b7f

.log 18aad 600 18b2f +

.log 18aad 600 18b2f +

.log 18aab 600 18ab4 +

.login 18abe 444 18b7f

.html 18abe 444 18b7c

.pl 18a90 444 18aa1

.txt 18abe 444 18b7c

mode
444

600

last name component

.cshrc

.log

training data

ID3 inducer

decision tree

extension gid mode uid wronly

ID3 Algorithm

1. Select attribute A as node to split on (based on relative ranking).
2. Split samples according to values they take on attribute A.
3. If leaf nodes are "pure", done.
4. Else, if attributes remaining, goto 1.

+

Figure 1. Example data and tree.

then compare this classification to the actual class of the file,
as observed in the annotated NFS trace. To obtain the most
realistic estimate of the true error, we calculate the training
error using 10-fold cross-validation [13]. We can then use
this estimate to automatically determine whether or not the
model is suitable enough for deployment in a self-* system.
However, the real measure of a model’s effectiveness is its
performance on unseen samples.

To demonstrate that our findings are not confined to a
single workload, system, or set of users, we train and test
our models on three different NFS traces from Harvard:
DEAS03, EECS03, and CAMPUS [4], and one trace from
Carnegie Mellon: LAB.

� DEAS03 (February) captures a mix of research and de-
velopment, administrative, and email traffic from Har-
vard’s Division of Engineering and Applied Sciences.

� EECS03 (February) captures a canonical engineering
workstation workload from Harvard’s Electrical Engi-
neering and Computer Science department.

� CAMPUS (10/15/2001 to 10/28/2001) traces one of
14 file systems that hold home directories for the Har-
vard College and Harvard Graduate School of Arts and
Sciences. The trace is almost entirely email.

� LAB (3/10/2003 to 3/23/2003) traces the main server
used for storage research in the Parallel Data Labora-
tory at Carnegie Mellon University.

The single-day prediction accuracies for the properties
shown in Table 1 are detailed elsewhere [5] and summa-
rized here. For each trace, models are trained on a Monday
and tested on a Tuesday. The baseline for comparison is
a MODE predictor, that simply predicts the most common
classification for a property. For example, if most files on
Monday are read-only, then MODE will predict read-only

for every file on Tuesday. MODE is therefore the equiva-
lent of a learning algorithm that places all files into a single
cluster, as opposed to a decision tree which has one cluster
per leaf node, distinguished by their common attributes.

In nearly all cases, our previous work shows that ABLE
much more accurately predicts the classes of files, rela-
tive to MODE. The prediction accuracies for the size and
lifetime classes are quite accurate (90-100%), especially
when compared to MODE which is often no better than
random guessing (i.e., 50%). The write-only and read-only
predictions show more variability (70-90%), but again are
much better than MODE. There are a few cases, such as for
the CAMPUS trace, where the workload is so skewed that
MODE performs about the same as ABLE. Barring these,
the benefits of clustering files by their attributes is clear.

Although these results are encouraging, to be of practi-
cal use in a self-* system, we must also be able to answer
questions related to the longevity of the model. In particu-
lar, we must have robust prediction accuracies over time and
retraining strategies for when prediction accuracies deteri-
orate. We expect that a model’s rule set will converge to a
small working set over time and that changes in the rule set
can be used to help describe changes in the workload. This
will contribute to techniques for automatically adapting to
changing workloads.

5. Model longevity

Storage systems experience a variety of change in their
workload: users come and go, new applications are in-
stalled, and different seasons exist (e.g., tax season in an
accounting firm). Self-* storage systems must learn to adapt
to these changes accurately and efficiently.

Adapting to changing workloads, in our case, re-
quires discovering new associations between attributes and
classes; that is, discovering or changing the clustering of
files. Recall that the leaf nodes of the decision tree are the
clusters to which we refer, and a file’s cluster determines its
class.

We distinguish two kinds of change: additive and contra-
dictory. Additive changes result in new rules that are added
to a given tree, and are most commonly seen when a tree is
still learning the workload of a system or when the workload
changes. Contradictory changes produce rules in opposition
to an already existing set of rules and signify a fundamen-
tal change in user or application behavior. However, we
found no significant occurrence of contradictory change in
the traces. We do find contradictory rules, but most occur
with rules that hover around 50% confidence. For example,
there are many cases where about half of the files in a clus-
ter are read-only and half are not. The classification rule for
this cluster can therefore easily flip given a few positive or
negative training examples. In addition, changes can either

one-shot learning

incremental learning

Predicate: size=0

0

20

40

60

80

100

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Testing day (DEAS03, February 15-28)

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 (%
)

Figure 2. By adding rules dynamically, an in-
cremental learner can often reduce the pre-
diction errors seen by a one-shot learner.

be transitory (lasting only a few days), or long-term.
Additive change is quite common in our NFS traces.

User activity varies by day, and consequently so does the
workload. This can be seen by the popularity of certain
files, or the manner in which they are accessed. As such, a
learning model that is built from a single day of activity may
not be representative of the true workload. In other words,
it may take more than a day of traffic to train a decision tree.

This section shows that the decision tree classifiers use
for our problem efficiently adapt to new workloads and con-
tinue to produce accurate predictions over the entire dura-
tion of our traces (two weeks to one month). For compari-
son, we present the results of two different training strate-
gies: incremental and one-shot. Incremental learners cumu-
latively train on all days. One-shot learners train on only the
first day of traffic in each of the traces.

5.1. Benefits of incremental learning

Unlike one-shot learning, which trains a model from a
fixed sample, incremental learning dynamically refines a
model with new samples as they become available [25]. The
benefits are that it is unnecessary to determine a fixed train-
ing window and that the model naturally adjusts to slow
changes over time. To quantify these benefits, we compare
the accuracies of these two training techniques on the entire
trace period for each of our traces, and illustrate specific
examples from DEAS03, our most diverse trace.

Figure 2 shows an example using the size=0 class. The
graph illustrates how an incremental learner is, in general,
more stable than a one-shot learner. Although a one-shot
learner may predict well at times, there are often cases
(e.g., Feb. 26-27) where missing rules result in a signifi-
cant degradation in prediction accuracy. By refining its rule
set, the incremental learner avoids the errors completely.

DEAS03 EECS03 CAMPUS LAB
Predicate ONCE INCR ONCE INCR ONCE INCR ONCE INCR
size=0 94% 95% 94% 97% 99% 99% 95% 96%
0�size�16K 90% 91% 81% 88% 99% 99% 84% 89%
lifespan�1s 83% 85% 87% 94% 76% 78% 91% 93%
write-only 75% 85% 68% 79% 84% 89% 83% 84%
read-only 62% 67% 52% 69% 85% 86% 72% 74%

Table 2. Monthly accuracies for incremental (INCR) and one-shot (ONCE) learning.

Predicate: lifespan <= 1sec

0

0.001

0.002

0.003

0.004

0.005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Training day (DEAS03, February 1-27)

n
ew

 r
u

le
s/

n
ew

 fi
le

s learning rate

Figure 3. The learning rate shows that most
of the learning occurs in the first few days of
training, and that the model eventually con-
verges to a working set of rules.

5.2. Learning rate

We define the learning rate of a model as the ratio of
new rules to files on a given day. Models still learning the
workload of a system will thus experience higher learning
rates than models that already have a well-established rule
set. We can use this knowledge to determine when a model
has passed the initial learning phase. It also tells us when
there has been a large additive change in the rule set.

Figure 3 shows the learning rate for the lifespan predicate
on DEAS03. Although the learning rate approaches a non-
zero limit, the rule set does converge. The non-zero limit
is the result of transitory changes in the rule set over time.
In this case, these are due to uniquely named application
files (usually for lock-files that include a random string in
the name) that are being created at a relatively constant rate
throughout the month. Because tree creation uses filename
components [5], a unique filename component (e.g., the
component unique in the filename foo.unique.lock) may get
its own rule. Analysis indicates that these transitory rules
have no impact on prediction accuracy, and can be lazily
pruned from the tree based on simple LRU-style, frequency-
of-use metrics.

5.3. Discussion

In general, we find that incremental learners perform bet-
ter overall than the one-shot learners. Table 2 compares
the one-shot and incremental learners over all of our traces
and for each of the classes. In most cases the incremen-
tal learners performed slightly better, indicating that most
of the activity seen on the first day of the training period
was representative of the entire trace. There are, however,
cases where the one-shot learner does poorly, resulting in
lower average prediction accuracy. This behavior is partic-
ularly evident when comparing the accuracies of the write-
only and read-only classes. In many cases, the incremental
learner improved average accuracy by over 10%.

Furthermore, the rule sets for our incremental learners
are relatively small. In this particular example, the month
of DEAS03 activity resulted in about 1 million new files,
for which we created 1000 new rules, giving us a 1000:1
compression ratio. Table 3 shows the compression ratios,
which are the inverse of the training rate, over all traces and
classes. These ratios show the total number of files in each
trace to the total number of rules, at the end of the trace pe-
riod. The size and lifespan predictions were made on newly
created files and the write-only and read-only predictions on
files that were written or read. The ratios are relative to the
file counts shown in the table.

The relatively small set of rules means that a system ad-
ministrator or a self-* system component can sort the rule
set by frequency of use and obtain some insight into how the
system is being used. For example, imagine a system that
was being overwhelmed by application lock files. Trace-
based diagnosis of such a problem would be tedious and
incomplete, at best. Ideally, an administrator would like to
set a rule in a self-* system to automatically discover the
class of files exhibiting lock-file behavior. This class could
then be optimized for. This example is actually a reality on
the DEAS03 and EECS03 traces. The class is defined as
any file that lives for less than a second and contains zero
bytes of data. At create time, we can predict if a new file
will exhibit these properties with 95% accuracy.

DEAS03 EECS03 CAMPUS LAB
created files 987K 575K 441K 116K
read/written 742K 711K 106K 140K
size=0 1134:1 725:1 4327:1 571:1
0�size�16K 806:1 529:1 4012:1 282:1
lifespan�1s 952:1 739:1 434:1 397:1
write-only 529:1 532:1 291:1 302:1
read-only 455:1 458:1 439:1 309:1

Table 3. File-to-rule compression ratios.

6. Modeling trade-offs

File classification for self-* systems has several trade-
offs. For example, we can trade model efficiency for accu-
racy, and model accuracy for precision.

6.1. Trading efficiency for accuracy

File systems such as NTFS [22] allow applications to
store attributes with a file, and research is being conducted
to allow users and applications to tag files with additional at-
tributes for improved search capabilities [9, 23]. Although
these additional attributes may provide a wealth of informa-
tion, building classification trees with too many attributes
can result in over-fitting of the training data (i.e., discov-
ering false associations) if there are too many attributes and
too few observations. Furthermore, additional attributes can
lead to more rules and smaller compression ratios. In our
NFS traces, the attributes of a file are limited to the UNIX
file attributes. However, even with such a small attribute
space, we begin to see the effects of over-fitting.

In general, by withholding attributes from a model, the
efficiency of model generation improves, thereby allowing
for faster learning rates, but at the potential cost of accu-
racy. To test this, we create a modified version of ABLE
that only uses filenames, and ignores the other attributes
(GID, UID, permissions, creation time). The resulting tree,
NABLE (name-based ABLE), is compared against ABLE
for accuracy. ABLE does find false associations, albeit a
small number (less than 2% difference in prediction accu-
racy), in many of the classes we are predicting. These false
associations are eliminated with more training data. In this
particular test, 10 extra days of training were required to
completely erase the effects of over-fitting.

Over-fitting due to large attribute spaces is always a
problem. Fortunately there are solutions [2, 11], most of
which involve some form of attribute filtering as a pre-
processing step to building a tree.

0

10000

20000

30000

40000

50000

60000

1 20 40 60 80 100

To
ta

l c
o

st

0

10

20

30

40

50

60

70

80

90

100

Cost of false negative : false positive

Pred
ictio

n
 accu

racy (%
)

Predicate: lifespan<=1s

total cost prediction acc

Figure 4. Total cost vs. learning bias.

6.2. Trading accuracy for precision

Predictive models can have false positives (incorrectly
predicting that a new file belongs to a class) and false neg-
atives. A more accurate model maximizes the number of
correct predictions without considering the relative costs of
these error types. A more precise model considers their
costs so as to minimize an application cost function. How-
ever, introducing such a learning bias through cost func-
tions reduces the model’s overall accuracy. This is a com-
mon trade-off for classifiers, and decision trees can be made
more or less precise as desired.

For example, consider building a learning model to pre-
dict the lifetime of a file. If a file will live for less than
a second, we may choose to store it in NVRAM. Other-
wise, the file is stored on disk through several I/Os. In this
case, false negatives (a missed NVRAM opportunity) may
be preferred, thus arguing for a more accurate model. On
the other hand, when classifying files to be archived, we
want to avoid false positives (prematurely sending a file to
tape), thereby arguing for a model with greater precision.

By using cost functions, decision trees can be built from
samples with different proportions of positive and negative
examples. By weighting samples in this manner you penal-
ize the tree for making one of the two types of errors (false
positive or false negative) and create biased trees that try to
avoid the particular error [28].

Figure 4 shows the total cost of mispredictions, relative
to the cost of false negative for one day of the DEAS03
trace. The cost on the y-axis is in relative units, and the
x-axis shows the relative cost of a false negative to a false
positive. The optimal bias is the x-value that produces the
lowest point in the graph. Figure 4 illustrates how a self-*
system can adjust the cost and improve precision at the ex-
pense of overall accuracy. To be practical in a self-* system,
system goals will need to be translated into appropriate cost

functions. In addition, techniques for estimating class prob-
abilities can be used to allow an application to take more
subtle actions, depending on the confidence of the predic-
tion [17]. These are areas of future work.

7. Conclusion and Future Work

Truly self-* systems will automatically set policies,
adapt to changes, and diagnose performance dips. This pa-
per develops one technology that will help file and storage
systems work towards these goals. ABLE uses decision
trees to automatically learn how to classify files and predict
the properties of new files, as they are created, based on the
strong associations between a file’s properties and its names
and attributes. These trees provide prediction accuracies in
the 90% range, across the four real NFS environments stud-
ied. They also efficiently capture the associations and adapt
well over time via incremental learning.

In continuing work, we plan to integrate ABLE into a
prototype self-* storage system being built at Carnegie Mel-
lon University [7]. Model induction will happen regularly
within each server in the system, and the models will be
used to guide such policy decisions as encoding schemes
(e.g., RAID5/erasure coding vs. mirroring), replication fac-
tors, disk layout, prefetching, and load balancing. Further,
changes in the models may identify substantial changes in
the set of applications being served, and can therefore be
used to self-diagnose workload changes and automatically
reconfigure a running system.

References

[1] A. Amer, D. Long, J.-F. Paris, and R. Burns. File access pre-
diction with adjustable accuracy. International Performance
Conference on Computers and Communication. IEEE, 2002.

[2] R. Caruana and D. Freitag. Greedy attribute selection. In-
ternational Conference on Machine Learning, pages 28–36,
1994.

[3] T. Dietterich. Machine learning. ACM Computing Surveys,
28(4):3–3.

[4] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS
tracing of an email and research workload. Conference on
File and Storage Technologies, pages 203–217. USENIX As-
sociation, 2003.

[5] D. Ellard, M. Mesnier, E. Thereska, G. R. Ganger, and
M. Seltzer. Attribute-based prediction of file properties. TR
14-03. Harvard University, December 2003.

[6] G. R. Ganger. Generating Representative Synthetic Work-
loads: An Unsolved Problem. Proceedings of the Computer
Management Group (CMG) Conference, pages 1263–1269,
1995.

[7] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-*
Storage: brick-based storage with automated administration.
Technical Report CMU-CS-03-178. Carnegie Mellon Uni-
versity, August 2003.

[8] Gartner Group. Total Cost of Storage Ownership — A User-
oriented Approach.

[9] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole
Jr. Semantic file systems. ACM Symposium on Operating
System Principles. Published as Operating Systems Review,
25(5):16–25, 13–16 October 1991.

[10] IBM. Autonomic Storage. http://www.almaden.com.
[11] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features

and the subset selection problem. International Conference
on Machine Learning, pages 121–129, 1994.

[12] A. J. Klosterman and G. Ganger. Cuckoo: layered cluster-
ing for NFS. Technical Report CMU–CS–02–183. Carnegie
Mellon University, October 2002.

[13] R. Kohavi. A study of cross-validation and bootstrap for ac-
curacy estimation and model selection. Fourteenth interna-
tional joint conference on artificial intelligence, pages 1137–
1143, 1995.

[14] T. M. Kroeger and D. D. E. Long. The case for efficient file
access pattern modeling. Hot Topics in Operating Systems,
pages 14–19, 1999.

[15] E. Lamb. Hardware spending sputters. Red Herring, pages
32–33, June, 2001.

[16] T. M. Madhyastha and D. A. Reed. Input/output access pat-
tern classification using hidden Markov models. Workshop
on Input/Output in Parallel and Distributed Systems, pages
57–67. ACM Press, December 1997.

[17] D. D. Margineantu and T. G. Dietterich. Improved Class
Probability Estimates from Decision Tree Models. Research
note, Department of Computer Science, Oregon State Univ.

[18] J. T. McClave, F. H. Dietrich II, and T. Sincich. Statistics.
Prentice Hall, 1997.

[19] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based Stor-
age. Communications Magazine, 41(8):84–90. IEEE, August
2003.

[20] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[21] J. Oly and D. A. Reed. Markov model prediction of I/O

requests for scientific applications. ACM International Con-
ference on Supercomputing. ACM, 2002.

[22] D. A. Solomon and M. E. Russinovich. Inside Microsoft Win-
dows 2000, Third Edition. Microsoft Press, 2000.

[23] C. A. N. Soules and G. R. Ganger. Why can’t I find my
files? New methods for automating attribute assignment. Hot
Topics in Operating Systems, pages 115–120. USENIX As-
sociation, 2003.

[24] C. Staelin and H. Garcia-Molina. Smart filesystems. Winter
USENIX Technical Conference, pages 45–51, 21–25 January
1991.

[25] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision
tree induction based on efficient tree restructuring. Machine
Learning, 29(1):5–44, 1997.

[26] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding
vs. replication: a quantitative approach. First International
Workshop on Peer-to-Peer Systems (IPTPS 2002), 2002.

[27] J. Wilkes. Data services - from data to containers.
[28] I. H. Witten and E. Frank. Data mining: practical ma-

chine learning tools and techniques with Java implementa-
tions. Morgan Kaufmann, 2000.

[29] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-
murthy, and T. E. Anderson. Trading capacity for perfor-
mance in a disk array. Symposium on Operating Systems
Design and Implementation, pages 243–258. USENIX Asso-
ciation, 2000.

