
A NEW UTILITY FUNCTION
• Properties desired:

› Larger object → smaller utility
› Sooner-to-be-accessed → larger utility
› Group size one → Belady’s MIN

(weighted by size)
› Easy and accurate to track online

LEARNING IN GL-CACHE
• Static + dynamic features: write rate,

miss ratio, request rate, mean object size,
age, # requests, # active objects

• Model: gradient-boosting trees
• Objective: regression
• Eviction in GL-Cache

GL-Cache: Group-level Learning for Efficient and
High-performance Caching

Introduction
Juncheng Yang (Carnegie Mellon), Ziming Mao (Yale University), Yao Yue (Pelikan Foundation), K. V. Rashmi (Carnegie Mellon)

• Cache is widely deployed to support the modern Internet
• Two metrics are important for a cache: efficiency

(measured by hit ratio) and throughput performance
• Many recent works improve the efficiency of caches

using machine learning

Design of GL-Cache

• Many challenges:
› How does GL-Cache group objects?
› What and How does GL-Cache learn?
› How does GL-Cache evict?

Evaluation
• Efficiency

› GL-Cache-E is slightly better than state-of-the-art algorithms
› GL-Cache-T is close to LRB

Summary
• Group-level learning

1. Amortizes the overhead of learning, and
2. Accumulates more information for

learning

object groupF

object groupF

 fullF empty

F feature cache

update model

inference

model

training
training

datasample

rank groups
for eviction

Fb

Fc

object groupFe

Fd

object groupFa

rank

select based on
1

size ּ age

1

4

2

3

8

merge
evict

Fx

1

4

2

 evict evictFb

 evictFc

 evictFd

Fx = (Fb+Fc+Fd)/3

LRU
Cacheus

LHD LRB

GL-C
ache-E

GL-C
ache-T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
it

ra
tio

 in
cr

ea
se

 o
ve

r F
IF

O

LRU
Cacheus

LHD LRB

GL-C
ache-E

GL-C
ache-T

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 F
IF

O

• Throughput
› GL-Cache-E is faster than all state-of-the-art algorithms
› GL-Cache-T is significantly faster

Background: Learned Caches
• We categorize the existing learned caches into 3 types:

• Existing learned caches either compromise on throughput or
cannot leverage multiple features

expert 1
cache

which one to evict?
dark

green

expert 2

dark
red

both e�ciency and throughput depend on the experts chosen
maintain two sets of metadata is expensive and complex

delayed reward

cache

which one to evict?

can only use limited number of features → poor e�ciency
require sampling many objects to

compare at each eviction → low throughput

Age

Re
qu

es
t p

ro
ba

bi
lit

y

cache

which one to evict?

leverage more features than other learned caches
sampling and inference at each eviction → very very very slow

1features

features

features

features

score

8

4

20

3. Object-level learning

2. Learning from probability distribution, e.g., LHD

1. Learning from simple experts, e.g., LeCaR
and CACHEUS

Group-level Learning
• Amortizes the cost of learning across multiple objects
• Can accumulate more information for learning since most

objects have very few requests

utilizes multiple features, while amortizes overheads
groups accumulate more information and are easier to learn

100

features

features

features

score

8

20

object groups

Group-level learned cache

GL-Cache Architecture

INSERTION-TIME-BASED GROUPING

A UTILITY FUNCTION TO MEASURE USEFULNESS OF A GROUP

Uo(t) =
1

To(t)× so

object u�lity at �me t

Ugroup (t) = ∑
o∈group

1
To (t)× so

group u�lity

Merge-based eviction

juncheng
Highlight

Juncheng Yang
1. Let’s make this the same foramt as “learning in GL-Cache”

Juncheng Yang

Juncheng Yang
2. remove this “a utility…”

Juncheng Yang
3. remove weighted by size

Juncheng Yang
4. move this section after background

Juncheng Yang
6. keep the three figures the same size and aligned?

Juncheng Yang
5. remove “and cacheus”

Juncheng Yang

Juncheng Yang

