Scalable Spatial Indexing for Data-Intensive Science Applications

Julio López, Bin Fu, Eugene Fink, Garth Gibson

Overview

Many data-intensive problems in science rely on spatial data structures to obtain a solution. Our approach is to extend table software, such as HBase, to provide distributed scalable spatial data structures. Our initial implementation linearizes octrees using Morton codes to create a Z-order fill.

Approach

- Input: point records with location and other attributes
- Use an octree to partition and index the records
- Linearize octree and store in a distributed sorted table
- Key linearization using Morton codes
- Z-order space filling curve
- Sorted table: HBase, Cassandra, Hypertable
- Initial implementation as a client-side library
- Tools for bulk-loading index creation

Decomposition of the space using an octree. The spatial domain representation (left) has an equivalent tree representation (right). Nodes in the tree are numbered using a pre-fix scheme equivalent to the pre-order traversal of the tree.

Applications

- Astrophysics:
 - Group-finding (galaxy clustering)
 - Correlation functions
 - Domain partitioning
 - Density distribution function
- Seismology
 - 3D ground model datasets for simulation
 - Indexing of 4D wavefields

Research Questions

- Approaches for index construction:
 - A1: Insert unsorted point records
 - A2: Sort first, then partition and bulk load
- What functionality should be moved to the server?
- New distributed algorithms for data-analytics at scale.
- How can these algorithms leverage the distributed spatial indices?