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Abstract

This paper describes a decentralized consistency protocol for survivable storage that exploits local data versioning within each
storage-node. Such versioning enables the protocol to efficiently provide linearizability and wait-freedom of read and write opera-
tions to erasure-coded data in asynchronous environments with Byzantine failures of clients and servers. By exploiting versioning
storage-nodes, the protocol shifts most work to clients and allows highly optimistic operation: reads occur in a single round-
trip unless clients observe concurrency or write failures. Measurements of a storage system prototype using this protocol show
that it scales well with the number of failures tolerated, and its single request response time compares favorably with an efficient
implementation of Byzantine-tolerant state machine replication.
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1 Introduction

Survivable storage systems spread data redundantly across a set of distributed storage-nodes in an effort
to ensure its availability despite the failure or compromise of storage-nodes. Such systems require some
protocol to maintain data consistency and liveness in the presence of failures and concurrency.

This paper describes and evaluates a new consistency protocol that operates in an asynchronous en-
vironment and tolerates Byzantine failures of clients and storage-nodes. The protocol supports a hybrid
failure model in which up to t storage-nodes may fail: b <t of these failures can be Byzantine and the
remainder can be crash. The protocol also supports use of m-of-n erasure codes (i.e., m-of-n fragments are
needed to reconstruct the data), which usually require less network bandwidth (and storage space) than full
replication [51, 52].

Briefly, the protocol works as follows. To perform a write, a client determines the current logical time
and then writes time-stamped fragments to at least a threshold quorum of storage-nodes. Storage-nodes
keep all versions of fragments they are sent until garbage collection frees them. To perform a read, a client
fetches the latest fragment versions from a threshold quorum of storage-nodes and determines whether they
comprise a completed write; usually, they do. If they do not, additional and historical fragments are fetched,
and repair may be performed, until a completed write is observed.

The protocol gains efficiency from five features. First, the space-efficiency of m-of-n erasure codes can
be substantial, reducing communication overheads significantly. Second, most read operations complete in
a single round trip: reads that observe write concurrency or failures (of storage-nodes or a client write) may
incur additional work. Most studies of distributed storage systems (e.g., [4, 37]) indicate that concurrency
is uncommon (i.e., writer-writer and writer-reader sharing occurs in well under 1% of operations). Failures,
although tolerated, ought to be rare. Third, incomplete writes are replaced by subsequent writes or reads
(that perform repair), thus preventing future reads from incurring any additional cost; when subsequent
writes do the fixing, additional overheads are never incurred. Fourth, most protocol processing is performed
by clients, increasing scalability via the well-known principle of shifting work from servers to clients [24].
Fifth, the protocol only requires the use of cryptographic hashes, rather than more expensive cryptographic
primitives (e.g., digital signatures).

This paper describes the protocol in detail, develops bounds for thresholds in terms of the number
of failures tolerated (i.e., the protocol requires at least 2t + 2b + 1 storage-nodes), and provides a proof
sketch of its safety and liveness. It also describes and evaluates its use in a prototype storage system called
PASIS [52]. To demonstrate that our protocol is efficient in practice, we compare its performance to BFT [8,
9], the Byzantine fault-tolerant replicated state machine implementation that Castro and Liskov have made
available [10]. Experiments show that PASIS scales better than BFT in terms of network utilization at the
server and in terms of work performed by the server. Experiments also show that response times of PASIS
and BFT are comparable.

This protocol is timely because many research storage systems are investigating practical means of
achieving high fault tolerance and scalability. Examples include the FARSITE project at Microsoft Re-
search [2], the Federated Array of Bricks project at HP Labs [17], the IceCube project at IBM [35],
the OceanStore project at Berkeley [28], and the Self-* Storage project at CMU [18]. Some of these
projects (e.g., [2, 28]) use Castro’s Byzantine Fault Tolerant (BFT) library [9]. Many of these projects
(e.g., [17, 18, 28, 35]) are considering the use of erasure codes for data storage. Our protocol for Byzantine-
tolerant erasure-coded storage can provide an efficient, scalable, highly fault-tolerant foundation for such
storage systems.
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Figure 1. High-level architecture for survivable storage. ~ Spreading data redundantly across storage-nodes improves its
fault-tolerance. Clients write and (usually) read data from multiple storage-nodes.

2 Background and related work

Figure 1 illustrates the abstract architecture of a fault-tolerant, or survivable, distributed storage system. To
write a data-item D, Client A issues write requests to multiple storage-nodes. To read D, Client B issues
read requests to an overlapping subset of storage-nodes. This scheme provides access to data-items even
when subsets of the storage-nodes have failed. One difficulty created by this architecture is the need for
a consistent view, across storage-nodes, of the most recent update. Without such consistency, data loss is
possible or even likely.

A common data distribution scheme used in such systems is replication, in which a writer stores a
replica of the new data-item value at each storage-node to which it sends a write request. Since each storage-
node has a complete instance of the data-item, the main difficulty is identifying and retaining the most recent
instance. Alternately, more space-efficient erasure coding schemes can be used to reduce network load
and storage consumption. With erasure coding schemes, reads require fragments from multiple servers.
Moreover, to decode the data-item, the set of fragments read must correspond to the same write operation.

To provide reasonable semantics, storage systems must guarantee that readers see consistent data-item
values. Specifically, the linearizability of operations is desirable for a shared storage system. Our protocol
tolerates Byzantine faults of any number of clients and a limited number of storage nodes while imple-
menting linearizable [23] and wait-free [21] read-write objects. Linearizability is adapted appropriately for
Byzantine clients, and wait-freedom is as in the model of Jayanti et al. [25].

Most prior systems implementing Byzantine fault-tolerant services adopt the replicated state machine
approach [43], whereby all operations are processed by server replicas in the same order (atomic broadcast).
While this approach supports a linearizable, Byzantine fault-tolerant implementation of any deterministic
object, such an approach cannot be wait-free [16, 21, 25]. Instead, such systems achieve liveness only
under stronger timing assumptions, such as synchrony (e.g., [12, 40, 45]) or partial synchrony [14] (e.g., [9,
26, 42]), or probabilistically (e.g., [6]). An alternative is Byzantine quorum systems [30], from which our
protocol inherit techniques (i.e., our protocol can be considered a Byzantine quorum system that uses the
threshold quorum construction). Protocols for supporting a linearizable implementation of any deterministic
object using Byzantine quorums have been developed (e.g., [33]), but also necessarily forsake wait-freedom
to do so. Additionally, most Byzantine quorum systems utilize digital signatures which are computationally
expensive.

Byzantine fault-tolerant protocols for implementing read-write objects using quorums are described



in [22, 30, 34, 39]. Of these related quorum systems, only Martin et al. [34] achieve linearizability in our
fault model, and this work is also closest to ours in that it uses a type of versioning. In our protocol, a reader
may retrieve fragments for several versions of the data-item in the course of identifying the return value of
a read. Similarly, readers in [34] “listen” for updates (versions) from storage-nodes until a complete write
is observed. Conceptually, our approach differs by clients reading past versions, versus listening for future
versions broadcast by servers. In our fault model, especially in consideration of faulty clients, our protocol
has several advantages. First, our protocol works for erasure-coded data, whereas extending [34] to erasure
coded data appears nontrivial. Second, ours provides better message efficiency: [34] involves a ©(N?)
message exchange among the N servers per write (versus no server-to-server exchange in our case) over
and above otherwise comparable (and linear in N) message costs. Third, ours requires less computation, in
that [34] requires digital signatures by clients, which in practice is two orders of magnitude more costly than
the cryptographic transforms we employ. Advantages of [34] are that it tolerates a higher fraction of faulty
servers than our protocol, and does not require servers to store a potentially unbounded number of data-
item versions. Our prior analysis of versioning storage, however, suggests that the latter is a non-issue in
practice [49], and even under attack this can be managed using a garbage collection mechanism we describe
in Section 5.

There exists much prior work (e.g., [3, 22, 36]) that combines erasure coded data (e.g., [41, 44]) with
guorum systems to improve the confidentiality and/or integrity of data along with its availability. However,
these systems do not provide consistency (i.e., a synchronization mechanism is required) and do not cope
with Byzantine clients.

We develop our protocol for a hybrid failure model of storage-nodes (i.e., a mix of crash and Byzantine
failures). The concept of hybrid failure models was introduced by Thambidurai and Park in [50]; other pro-
tocols have been developed for such failure models (e.g., Garay and Perry [19] consider reliable broadcast,
consensus and clock synchronization in the hybrid failure model and Malkhi, Reiter and Wool [31] consider
the resilience of Byzantine quorum systems to crash faults).

3 System model

We describe the system infrastructure in terms of clients and storage-nodes. There are N storage-nodes and
an arbitrary number of clients in the system.

A client or storage-node is correct in an execution if it satisfies its specification throughout the execu-
tion. A client or storage-node that deviates from its specification fails. We assume a hybrid failure model
for storage-nodes. Up to t storage-nodes may fail, b <t of which may be Byzantine faults [29]; the re-
mainder are assumed to crash. We make no assumptions about the behavior of Byzantine storage-nodes and
Byzantine clients (e.g., we assume that Byzantine storage-nodes can collude with each other and with any
Byzantine clients). A client or storage-node that does not exhibit a Byzantine failure (it is either correct or
crashes) is benign.

The protocol tolerates crash and Byzantine clients. As in any practical storage system, an authorized
Byzantine client can write arbitrary values to storage, which affects the value of the data, but not its con-
sistency. We assume that Byzantine clients and storage-nodes are computationally bounded so that we can
benefit from cryptographic primitives.

We assume an asynchronous model of time (i.e., we make no assumptions about message transmis-
sion delays or the execution rates of clients and storage-nodes, except that it is non-zero). We assume that
communication between a client and a storage-node is point-to-point, reliable, and authenticated: a cor-
rect storage-node (client) receives a message from a correct client (storage-node) if and only if that client
(storage-node) sent it to it.

There are two types of operations in the protocol — read operations and write operations — both of



which operate on data-items. Clients perform read/write operations that issue multiple read/write requests
to storage-nodes. A read/write request operates on a data-fragment. A data-item is encoded into data-
fragments. Clients may encode data-items in an erasure-tolerant manner; thus the distinction between data-
item and data-fragment. Requests are executed by storage-nodes; a correct storage-node that executes a
write request hosts that write operation.

Storage-nodes provide fine-grained versioning; correct storage-nodes host a version of the data-fragment
for each write request they execute. There is a well known zero time, 0, and null value, L, which storage-
nodes can return in response to read requests. Implicitly, all stored data is initialized to L at time 0.

4 Protocol

This section describes our Byzantine fault-tolerant consistency protocol that efficiently supports erasure-
coded data-items by taking advantage of versioning storage-nodes. It presents the mechanisms employed
to encode and decode data, and to protect data integrity from Byzantine storage-nodes and clients. It then
describes, in detail, the protocol in pseudo-code form. Finally, it develops constraints on protocol parameters
to ensure the safety and liveness of the protocol.

4.1 Overview

At a high level, the protocol proceeds as follows. Logical timestamps are used to totally order all write
operations and to identify data-fragments pertaining to the same write operation across the set of storage-
nodes. For each write, a logical timestamp is constructed by the client that is guaranteed to be unique
and greater than that of the latest complete write (the complete write with the highest timestamp). This
is accomplished by querying storage-nodes for the greatest timestamp they host, and then incrementing the
greatest response. In order to verify the integrity of the data, a hash that can verify data-fragment correctness
is appended to the logical timestamp.

To perform a read operation, clients issue read requests to a subset of storage-nodes. Once at least a read
qguorum of storage-nodes reply, the client identifies the candidate—the response with the greatest logical
timestamp. The set of read responses that share the timestamp of the candidate comprise the candidate
set. The read operation classifies the candidate as complete, repairable, or incomplete. If the candidate
is classified as complete, the data-fragments, timestamp, and return value are validated. If validation is
successful, the value of the candidate is returned and the read operation is complete; otherwise, the candidate
is reclassified as incomplete. If the candidate is classified as repairable, it is repaired by writing data-
fragments back to the original set of storage-nodes (note, in [32], repair, for replicas, is referred to as “write-
back”). Prior to performing repair, data-fragments are validated in the same manner as for a complete
candidate. If the candidate is classified as incomplete, the candidate is discarded, previous data-fragment
versions are requested, and classification begins anew. All candidates fall into one of the three classifications,
even those corresponding to concurrent or failed write operations.

4.2 Mechanisms

Several mechanisms are used in our protocol to achieve linearizability in the presence of Byzantine faults.

4.2.1 Erasure codes

In an erasure coding scheme, N data-fragments are generated during a write (one for each storage-node), and
any m of those data-fragments can be used to decode the original data-item. Any m of the data-fragments
can deterministically generate the other N — m data-fragments. We use a systematic information dispersal



algorithm [41], which stripes the data-item across the first m data-fragments and generates erasure-coded
data-fragments for the remainder. Other threshold erasure codes (e.g., Secret Sharing [44] and Short Secret
Sharing [27]) work as well.

4.2.2 Data-fragment integrity

Byzantine storage-nodes can corrupt their data-fragments. As such, it must be possible to detect and mask
up to b storage-node integrity faults.

CRoOSs CHECKSUMS: Cross checksums [20] are used to detect corrupt data-fragments. A cryptographic
hash of each data-fragment is computed. The set of N hashes are concatenated to form the cross checksum
of the data-item. The cross checksum is stored with each data-fragment (i.e., it is replicated N times). Cross
checksums enable read operations to detect data-fragments that have been modified by storage-nodes.

4.2.3 Write operation integrity

Mechanisms are required to prevent Byzantine clients from performing a write operation that lacks integrity.
If a Byzantine client generates random data-fragments (rather than erasure coding a data-item correctly),
then each of the (m) permutations of data-fragments could “recover” a distinct data-item. Additionally, a
Byzantine client could partition the set of N data-fragments into subsets that each decode to a distinct data-
item. These attacks are similar to poisonous writes for replication as described by Martin et al. [34]. To
protect against Byzantine clients, the protocol must ensure that read operations only return values that are
written correctly (i.e., that are single-valued). To achieve this, the cross checksum mechanism is extended
in three ways: validating timestamps, storage-node verification, and validated cross checksums.
VALIDATING TIMESTAMPS: To ensure that only a single set of data-fragments can be written at any
logical time, the hash of the cross checksum is placed in the low order bits of the logical timestamp. Note,
the hash is used for space-efficiency; instead, the entire cross checksum could be placed in the low bits of
the timestamp.

STORAGE-NODE VERIFICATION: On a write, each storage-node verifies its data-fragment against its hash
in the cross checksum. The storage-node also verifies the cross checksum against the hash in the timestamp.
A correct storage-node only executes write requests for which both checks pass. Thus, a Byzantine client
cannot make a correct storage-node appear Byzantine. It follows, that only Byzantine storage-nodes can
return data-fragments that do not verify against the cross checksum.

VALIDATED CROSS CHECKSUMS: Storage-node verification combined with a validating timestamp en-
sures that the data-fragments considered by a read operation were written by the client (as opposed to being
fabricated by Byzantine storage-nodes). To ensure that the client that performed the write operation acted
correctly, the reader must validate the cross checksum. To validate the cross checksum, all N data-fragments
are required. Given any m data-fragments, the full set of N data-fragments a correct client should have
written can be generated. The “correct” cross checksum can then be computed from the regenerated set
of data-fragments. If the generated cross checksum does not match the verified cross checksum, then a
Byzantine client performed the write operation. Only a single-valued write operation can generate a cross
checksum that verifies against the validating timestamp. Instead of using validated cross checksums, our
protocol could use Verifiable Secret Sharing [11, 15]. Verifiable Secret Sharing enables storage-nodes to
validate that the client acted correctly on each write request (instead of validating the data-item on each read
operation).

4.2.4 Authentication

Clients and storage-nodes must be able to validate the authenticity of messages. We use an authentication
scheme based on pair-wise shared secrets (e.g., between clients and storage-nodes), in which RPC argu-



WRITE(Data) :

. Time := READ_TIMESTAMP()

{Ds4,...,Dn} := ENCODE(Data)

. CC := MAKE_CROSS_CHECKSUM({Dy,...,Dn})
. LT := MAKE_TIMESTAMP(Time, CC)

! DO_WRITE({Djy,...,Dn}, LT, CC)

arwWNRE

READ_TIMESTAMP() :
: for all S; € {S1,...,Sn} do
SEND(S;, TIME_REQUEST)
end for
. ResponseSet := 0
repeat
ResponseSet :=
ResponseSet U RECEIVE(S, TIME_RESPONSE)
: until (|ResponseSet| =N —t)
. Time := MAX[ResponseSet.LT.Time]
: RETURN(Time)

A SR
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MAKE_CROSS_CHECKSUM({Dj,...,Dn}):

1: for all D; € {Dy,...,Dn} do
2 Hi := HASH(D;)

3: end for

4: CC:= H1|...‘HN

5. RETURN(CC)

MAKE_TIMESTAMP(LTmaX, CC) :
1: LT.Time ;= LTmax.Time +1
2: LT.Verifier := HASH(CC)
3: RETURN(LT)

DO_WRITE({Djy,...,Dn}, LT,CC):
: for all §; {Sl,...,SN} do

SEND(S;, WRITE_REQUEST, LT, Dj, CC)
end for
: ResponseSet := 0
repeat

ResponseSet :=

ResponseSet U RECEIVE(S, WRITE_RESPONSE)

. until (|ResponseSet| =N —t)

kbR

~

READ() :

1: ResponseSet := DO_READ(READ_LATEST REQUEST, L)

2: loop

3:  (CandidateSet, LT cangidate) :=
CHOOSE_CANDIDATE(ResponseSet)

4: if (JCandidateSet| > INCOMPLETE then

5: /* Complete or repairable write found =/

6: {Dg,...,Dn} := GENERATE_FRAGMENTS(CandidateSet)

7: CCyalid := MAKE_CROSS_CHECKSUM({D43,...,Dn})

8 if (CCyaig = CandidateSet.CC) then

9 /* Cross checksum is validated */

10: if (|CandidateSet| < COMPLETE) then

11: /* Repair is necessary s/

12: DO_WRITE({D4,...,Dn}, LTcandidate; CCvalid)
13: end if

14: Data := DECODE({D1,...,Dn})

15: RETURN((LT candigate, Data))

16: end if

17.  endif

18:  /* Incomplete or cross checksum not validated, loop again */
19:  ResponseSet := DO_READ(READ_PREV_REQUEST, LT cangidate)
20: end loop

DO_READ(READ_COMMAND, LT) :

1: for all S € {S1,...,Sn} do

2.  SEND(Sj, READ_COMMAND, LT)

3: end for

4. ResponseSet :=0

5: repeat

6: Resp:=RECEIVE(S, READ RESPONSE)
7. if (VALIDATE(Resp.D, Resp.CC, Resp.LT, S) = TRUE) then
8: ResponseSet := ResponseSet U Resp
9: endif

10: until (|ResponseSet| =N —t)

11: RETURN(ResponseSet)

VALIDATE(D, CC, LT, S):

1: if ((HASH(CC) # LT .Verifier) OR (HASH(D) # CC[S])) then
2:  RETURN(FALSE)

3: endif

4: RETURN(TRUE)

Figure 2: Write operation pseudo-code.

Figure 3: Read operation pseudo-code.

ments and replies are accompanied by an HMAC [5] (using the shared secret as the key). We assume an
infrastructure is in place to distribute shared secrets. Our implementation is able to make use of an existing

Kerberos [47] infrastructure.

4.3 Pseudo-code

The pseudo-code for the protocol is shown in Figures 2 and 3. The symbol LT denotes logical time and
LT candidate denotes the logical time of the candidate. The set {D1,...,Dy} denotes the N data-fragments;
likewise, {S1,...,Sn } denotes the set of N storage-nodes. In the pseudo-code, the binary operator ‘|’ denotes
string concatenation. Simplicity and clarity in the presentation of the pseudo-code was chosen over obvious

optimizations that are in the actual implementation.




4.3.1 Storage-node interface

Storage-nodes offer interfaces to write a data-fragment at a specific logical time; to query the greatest logical
time of a hosted data-fragment; to read the hosted data-fragment with the greatest logical time; and to read
the hosted data-fragment with the greatest logical time at or before some logical time. Given the simplicity
of the storage-node interface, storage-node pseudo-code has been omitted.

4.3.2 Write operation

The WRITE operation consists of determining the greatest logical timestamp, constructing write requests, and
issuing the requests to the storage-nodes. First, a timestamp greater than, or equal to, that of the latest com-
plete write must be determined. Collecting N —t responses, on line 7 of READ_TIMESTAMP, ensures that the
response set intersects a complete write at a correct storage-node. Since the environment is asynchronous, a
client can wait for no more than N —t responses. Fewer than N —t responses are actually required to observe
the timestamp of the latest complete write, since a single correct response is sufficient.

Next, the ENCODE function, on line 2 of WRITE, encodes the data-item into N data-fragments. The data-
fragments are used to construct a cross checksum from the concatenation of the hash of each data-fragment
(line 3). The function MAKE_TIMESTAMP, called on line 4, generates a logical timestamp to be used for the
current write operation. This is done by incrementing the high order bits of the greatest observed logical
timestamp from the ResponseSet (i.e., LT.TIME) and appending the Verifier. The Verifier is just the hash of
the cross checksum.

Finally, write requests are issued to all storage-nodes. Each storage-node is sent a specific data-
fragment, the logical timestamp, and the cross checksum. A storage-node validates the cross checksum
with the verifier and validates the data-fragment with the cross checksum before executing a write request
(i.e., storage-nodes call VALIDATE listed in the read operation pseudo-code). The write operation returns to
the issuing client once N —t WRITE_RESPONSE messages are received (line 7 of DO_WRITE).

4.3.3 Read operation

The read operation iteratively identifies and classifies candidates, until a repairable or complete candidate
is found. Once a repairable or complete candidate is found, the read operation validates its correctness and
returns the data. Note that the read operation returns a (timestamp, value) pair; in practice, a client only
makes use of the value returned.

The read operation begins by issuing READ_LATEST REQUEST commands to all storage-nodes (via the
DO_READ function). Each storage-node responds with the data-fragment, logical timestamp, and cross check-
sum corresponding to the greatest timestamp it has executed.

The integrity of each response is individually validated through the VALIDATE function, called on line 7
of DO_READ. This function checks the cross checksum against the Verifier found in the logical timestamp
and the data-fragment against the appropriate hash in the cross checksum.

Since, in an asynchronous system, slow storage-nodes cannot be differentiated from crashed storage-
nodes, only N —t read responses can be collected (line 10 of DO_READ). Since correct storage-nodes perform
the same validation before executing write requests, the only responses that can fail the client’s validation are
those from Byzantine storage-nodes. For every discarded Byzantine storage-node response, an additional
response can be awaited.

After sufficient responses have been received, a candidate for classification is chosen. The function
CHOOSE_CANDIDATE, called on line 3 of READ, determines the candidate timestamp, denoted LT cangidate
which is the greatest timestamp found in the response set. All data-fragments that share LT cangidae are
identified and returned as the candidate set. At this point, the candidate set contains a set of validated
data-fragments that share a common cross checksum and logical timestamp.



Once a candidate has been chosen, it is classified as either complete, repairable, or incomplete based on
the size of the CandidateSet. The rules for classifying a candidate as INCOMPLETE or COMPLETE are given
in the following subsection. If the candidate is classified as incomplete, a READ_PREV_REQUEST message is
sent to each storage-node with its timestamp. Candidate classification begins again with the new response
set.

If the candidate is classified as either complete or repairable, the candidate set contains sufficient data-
fragments written by the client to decode the original data-item. To validate the observed write’s integrity, the
candidate set is used to generate a new set of data-fragments (line 6 of READ). A validated cross checksum,
CCyaid, is computed from the newly generated data-fragments. The validated cross checksum is compared
to the cross checksum of the candidate set (line 8 of READ). If the check fails, the candidate was written
by a Byzantine client; the candidate is reclassified as incomplete and the read operation continues. If the
check succeeds, the candidate was written by a correct client and the read enters its final phase. Note that
this check either succeeds or fails for all correct clients regardless of which storage-nodes are represented
within the candidate set.

If necessary, repair is performed: write requests are issued with the generated data-fragments, the
validated cross checksum, and the logical timestamp (line 10 of READ). Storage-nodes not currently hosting
the write execute the write at the given logical time; those already hosting the write are safe to ignore it.
Finally, the function DECODE, on line 14 of READ, decodes m data-fragments, returning the data-item.

It should be noted that, even after a write completes, it may be classified as repairable by a subsequent
read, but it will never be classified as incomplete. For example, this could occur if the read set (of N —t
storage-nodes) does not fully encompass the write set (of N —t storage-nodes).

4.4 Protocol constraints

The symbol Q¢ denotes a complete write operation: the number of benign storage-nodes that must execute
write responses for a write operation to be complete. Note that since threshold quorums are used, Q¢ is a
scalar value. To ensure that linearizability and liveness are achieved, Q¢ and N must be constrained with
regard to b, t, and each other. As well, the parameter m, used in DECODE, must be constrained. We sketch
safety and liveness proofs for the protocol in Appendix I.

WRITE TERMINATION: To ensure write operations are able to complete in an asynchronous environment,

Qc<N-t-b. D

Since slow storage-nodes cannot be differentiated from crashed storage-nodes, only N —t responses can be
awaited. As well, b responses received may be from Byzantine storage-nodes.
READ CLASSIFICATION: To classify a candidate as COMPLETE, a candidate set of at least Q¢ benign
storage-nodes must be observed. In the worst case, at most b members of the candidate set may be Byzantine,
thus,

|CandidateSet| —b > Q¢ = COMPLETE. (2)

To classify a candidate as INCOMPLETE a client must determine that a complete write does not exist in
the system (i.e., fewer than Q¢ benign storage-nodes host the write). For this to be the case, the client must
have queried all possible storage-nodes (N —t), and must assume that nodes not queried host the candidate
in consideration. So,

|CandidateSet| +t < Qc = INCOMPLETE. (3)

REAL REPAIRABLE CANDIDATES: To ensure that Byzantine storage-nodes cannot fabricate a repairable
candidate, a candidate set of size b must be classifiable as incomplete. Substituting b into (3),

b+t < Qc. 4)



DECODABLE REPAIRABLE CANDIDATES: Any repairable candidate must be decodable. The lower bound
on candidate sets that are repairable follows from (3) (since the upper bound on classifying a candidate as
incomplete coincides with the lower bound on repairable):

1<m<Qc-—t. (5)
CONSTRAINT SUMMARY :

|CandidateSet| > Q¢ + b = COMPLETE,;
|CandidateSet| < Qc —t = INCOMPLETE;
t+b+1<Qc<N-t—b;
2t+2b+1<N;
1<m<Qc—t.

5 Evaluation

This section evaluates the performance and scalability of the consistency protocol in the context of a pro-
totype storage system called PASIS [52]. We compare the PASIS implementation of our protocol with the
BFT library implementation [10] of the BFT protocol for replicated state machines [7], since it is generally
regarded as efficient.

5.1 PASISimplementation

PASIS consists of clients and storage-nodes. Storage-nodes store data-fragments and their versions. Clients
execute the protocol to read and write data-items.

5.1.1 Storage-node implementation

PASIS storage-nodes use the Comprehensive Versioning File System (CVFS) [46] to retain data-fragments
and their versions. CVFS uses a log-structured data organization to reduce the cost of data versioning.
Experience indicates that retaining every version and performing local garbage collection comes with min-
imal performance cost (a few percent) and that it is feasible to retain complete version histories for several
days [46, 49].

We extended CVFS to provide an interface for retrieving the logical timestamp of a data-fragment.
Each write request contains a data-fragment, a logical timestamp, and a cross checksum. In a normal read
response, storage-nodes return all three. To improve performance, read responses contain a limited version
history containing logical timestamps of previously executed write requests. The version history allows
clients to identify and classify additional candidates without issuing extra read requests. The storage-node
can also return read responses that contain no data other than version histories, which makes candidate
classification more network-efficient.

Pruning old versions, or garbage collection, is necessary to prevent capacity exhaustion of the backend
storage-nodes. A storage-node in isolation, by the nature of the protocol, cannot determine which local
data-fragment versions are safe to garbage-collect. An individual storage-node can garbage collect a data-
fragment version if there exists a later complete write for the corresponding data-item. Storage-nodes are
able to classify writes by executing the read consistency protocol in the same manner as the client. Further
discussion of the implications of bounded storage capacity on the protocol is provided in Section 6.



5.1.2 Client implementation

The client module provides a block-level interface to higher level software, and uses a simple RPC interface
to communicate with storage-nodes. The RPC mechanism uses TCP/IP. The client module is responsible
for the execution of the consistency protocol and for encoding and decoding data-items.

Initially, read requests are issued to the first Qc + b storage-nodes. PASIS utilizes read witnesses to
make read operations more network efficient; only m of the initial requests request the data-fragment, while
all request version histories. If the read responses do not yield a candidate that is classified as complete,
read requests are issued to the remaining storage-nodes (and a total of up to N —t responses are awaited).
If the initial candidate is classified as incomplete, subsequent rounds of read requests fetch only version
histories until a candidate is classified as either repairable or complete. If necessary, after classification,
extra data-fragments are fetched according to the candidate timestamp. Once the data-item is successfully
validated and decoded, it is returned to the client.

5.1.3 Mechanism implementation

We measure the space-efficiency of an erasure code in terms of blowup—the total amount of data stored
over the size of the data-item. We use an information dispersal algorithm [41] which has a blowup of %
Our information dispersal implementation stripes the data-item across the first m data-fragments (i.e., each
data-fragment is % of the original data-item’s size). These stripe-fragments are used to generate the code-
fragments via polynomial interpolation within a Galois Field, which treats the stripe-fragments and code-
fragments as points on some m — 1 degree polynomial. Our implementation of polynomial interpolation was
originally based on publicly available code for information dispersal [13]. We modified the source to make
use of stripe-fragments and added an implementation of Galois Fields of size 28 that use lookup tables for
multiplication.

Our implementation of cross checksums closely follows Gong [20]. We use a publicly available im-
plementation of MD5 for all hashes [1]. Each MD5 hash is 16 bytes long; thus, each cross checksum is
N x 16 bytes long.

5.2 Experimental setup

We use a cluster of 20 machines to perform experiments. Each machine is a dual 1 GHz Pentium 11l
machine with 384 MB of memory. Storage-nodes use a 9 GB Quantum Atlas 10K as the storage device.
The machines are connected through a 100 Mb switch. All machines run the Linux 2.4.20 SMP kernel.

In all experiments, clients keep a single read or write operation for a random 16 KB block outstanding.
Once an operation completes, a new operation is issued (there is no think time). For all experiments, the
working set fits into memory and all caches are warmed up beforehand.

Most experiments focus on configurations whereb =t andt = {1,2,3,4}. Thus, for PASIS,N =4b+1,
Qc=2b+1,andm=b+1. ForBFT,N=3b+1 (i.e., N = {4,7,10,13}).

5.2.1 PASIS configuration

Each storage-node is configured with 128 MB of data cache, and no caching is done on the clients. All
experiments show results using write-back caching at the storage nodes, mimicking availability of 16 MB of
non-volatile RAM. This allows us to focus experiments on the overheads introduced by the protocol and not
those introduced by the disk subsystem. All messages are authenticated using HMACS; pair-wise symmetric
keys are distributed prior to each experiment.

10



b=1 =2 b=3 b=4
Erasure coding 1250 1500 1730 1990
Cross checksum 360 440 480 510
Verifier 16 2.3 3.6 4.3
Validate 82 58 48 40
Authenticate 15 15 21 2.1

Table 1: Computation costsin PASISin ps. Client and storage-node computation costs using a 1GHz CPU. Erasure coding,
cross checksum, and verifier generation are performed by the client for every operation. Validation is performed by storage-nodes.
Authentication is performed by both clients and storage-nodes for every request.

5.2.2 BFT configuration

Operations in BFT [7] require agreement among the replicas (storage-nodes in PASIS). Agreement is per-
formed in four steps: (i) the client broadcasts requests to all replicas; (ii) the primary broadcasts pre-prepare
messages to all replicas; (iii) all replicas broadcast prepare messages to all replicas; and, (iv) all replicas send
replies back to the client and then broadcast commit messages to all other replicas. Commit messages are
piggy-backed on the next pre-prepare or prepare message to reduce the number of messages on the network.
Authenticators, lists of MACs, are used to ensure that broadcast messages from clients and replicas cannot
be modified by a Byzantine replica. All clients and replicas have public and private keys that enables them to
exchange symmetric cryptography keys used to create MACs. Logs of commit messages are checkpointed
(garbage collected) periodically.

An optimistic fast path for read operations (i.e., operations that do not modify state) is implemented in
BFT. The client broadcasts its request to all replicas. Each replica replies once all messages previous to the
request are committed. Only one replica sends the full reply (i.e., the data and digest), and the remainder
just send digests that can verify the correctness of the data returned. If the replies from replicas do not agree,
the client re-issues the read operation—for the replies to agree, the read-only request must arrive at 2b+ 1
of the replicas in the same order (with regard to other write operations). Re-issued read operations perform
agreement using the base BFT algorithm.

The BFT configuration does not store data to disk, instead it stores all data in memory and accesses it
via memory offsets (i.e., we implemented a simple block interface using BFT). For all experiments, view
changes are suppressed. BFT uses UDP connections rather than TCP. The BFT implementation defaults to
using IP multicast. In our environment, like many, IP multicast broadcasts to the entire subnet, thus making
it unsuitable for shared environments. We found that the BFT implementation code is fairly fragile when
using IP multicast in our environment, making it necessary to disable IP multicast in some cases (where
stated explicitly). The BFT implementation authenticates broadcast messages via authenticators, and point
to point messages with MACs.

5.3 Mechanism costs

Client and storage-node computation costs in PASIS are listed in Figure 1. For every read and write op-
eration, clients perform erasure coding (i.e., they compute N — m data-fragments given m data-fragments),
generate a cross checksum, and generate a verifier. Recall that writes generate the first m data-fragments by
striping the data-item into m fragments. Similarly, reads must generate N — m fragments, from the m they
have, in order to verify the cross checksum.

Storage-nodes validate each write request they receive. This validation requires a comparison of the
data-fragment’s hash to the hash within the cross checksum, and a comparison of the cross checksum’s hash
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Figure 4: Mean responsetime vs. total failurestolerated. Mean response times of read and write operations of random 16 KB
blocks in PASIS and BFT. Lines are shown for PASIS that correspond to both b =t and b = 1 (a hybrid fault model). Multicast was
not used for these BFT experiments.

to the verifier within the timestamp.

All requests and responses are authenticated via HMACS. The cost of authenticating write requests,
listed in the table, is very small. The step-wise increase in computation cost from b =2 to b = 3 is due to
the set of arguments increasing into a second block. The cost of authenticating read requests and timestamp
requests are similar to those listed in the table.

5.4 Performance and scalability
5.4.1 Response time

Figure 4 shows the mean response time of a single request from a single client as a function of tolerated
number of storage-node failures. Due to the fragility of the BFT implementation with b > 1, IP multicast
was disabled for BFT during this experiment. The focus in this plot is the slopes of the response time lines:
the flatter the line the more scalable the protocol is with regard to the number of faults tolerated. In our
environment, a key contributor to response time is network cost, which is dictated by the space-efficiency of
the protocol.

Figure 5 breaks the mean response times of read and write operations, from Figure 4, into the costs at
the client, on the network, and at the storage-node for b =1 and b = 4. Since measurements are taken at
the user-level, kernel-level timings for host network protocol processing (including network system calls)
are attributed to the “network” cost of the breakdowns. To understand the response time measurements and
scalability of these protocols, it is important to understand these breakdowns.

PASIS has better response times than BFT for write operations due to the space-efficiency of erasure
codes and the nominal amount of work storage-nodes perform to execute write requests. For b = 4, BFT has
a blowup of 13x on the network (due to replication), whereas our protocol has a blowup of %7 =3.4x on
the network. With IP multicast the response time of the BFT write operation would improve significantly,
since the client would not need to serialize 13 replicas over its link. However, IP multicast does not reduce
the aggregate server network utilization of BFT—for b = 4, 13 replicas must be delivered.

PASIS has longer response times than BFT for read operations. This can be attributed to two main
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Figure 5: Protocol cost breakdown. The bars illustrate the cost breakdown of read and write operations for PASIS and BFT for
b =1 and b = 4. Each bar corresponds to a single point on the mean response time graph in Figure 4. BFT does not store data to
disk, as such no server storage cost is shown for BFT.

factors: First, the PASIS storage-nodes store data in a real file system; since the BFT-based block store
keeps all data in memory and accesses blocks via memory offsets, it incurs almost no server storage costs.
We expect that a BFT implementation with actual data storage would incur server storage costs similar to
PASIS (e.g., around 0.7 ms for a write and 0.4 ms for a read operation, as is shown for PASIS with b =1 in
Figure 5). Indeed, the difference in read response time between PASIS and BFT at b = 1 is mostly accounted
for by server storage costs. Second, for our protocol, the client computation cost grows as the number of
failures tolerated increases because the cost of generating data-fragments grows as N increases.

In addition to the b =t case, Figure 4 shows one instance of PASIS assuming a hybrid fault model
with b = 1. For space-efficiency, we set m =t + 1. Consequently, Qc =2t+21and N =3t+2. Att =1,
this configuration is identical to the Byzantine-only configuration. Ast increases, this configuration is more
space-efficient than the Byzantine-only configuration, since it requires t — 1 fewer storage-nodes. As such,
the response times of read and write operations scale better.

Some read operations in PASIS can require repair. A repair operation must perform a “write” oper-
ation to repair the value before it is returned by the read. Interestingly, the response time of a read that
performs repair is less than the sum of the response times of a normal read and a write operation. This is
because the “write” operation during repair does not need to read logical timestamps before issuing write
requests. Additionally, data-fragments need only be written to storage-nodes that do not already host the
write operation.

5.4.2 Throughput

Figure 6 shows the throughput in 16 KB requests per second as a function of the number of clients (one
request per client) for b = 1. Read and write operations are evaluated separately. Since b =1 in this
experiment, BFT uses multicast (which greatly improves its network efficiency). PASIS was run in two
configurations, one with the thresholds set to that of the minimum system with m = 2, N = 5 (write blowup
of 2.5x), and one, more space-efficient, with m = 3, N = 6 (write blowup of 2x). Results indicate that, at
high client load, throughput is limited by the server network bandwidth.
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Figure 6: Throughput vs. number of clients (b = 1). Throughput of read and write operations of random 16 KB blocks in
PASIS and BFT for b = 1. Each client had one request outstanding. For PASIS, lines corresponding to both m = 2,N = 4 and
m = 3,N = 5 are shown. For BFT, multicast was used.

At high load, PASIS has greater write throughput than BFT. BFT’s write throughput flattens out at 456
requests per second. We observed BFT’s write throughput drop off as client load increased; likewise, we
observed a large increase in request retransmissions. We believe that this is due to the use of UDP and
a coarse grained retransmit policy in BFT’s implementation. The write throughput of PASIS flattens out
at 733 requests per second, significantly outperforming BFT. This is because of the network-efficiency of
PASIS. Even with multicast enabled, each BFT server link sees a full 16 KB replica, whereas each PASIS
server link sees % KB. Similarly, due to network space-efficiency, the PASIS configuration using m = 3
outperforms the minimal PASIS configuration (954 requests per second).

Both PASIS and BFT have roughly the same network utilization per read operation (16 KB per op-
eration). To be network-efficient, PASIS uses read witnesses and BFT uses “fast path” read operations.
However, PASIS makes use of more storage-nodes than BFT does servers. As such, the aggregate band-
width available for reads is greater for PASIS than for BFT, and consequently PASIS has a greater read
throughput than BFT. Although BFT could add servers to increase its read throughput, doing so would
not increase its write throughput (indeed, write throughput would likely drop due to the extra inter-server
communication).

5.4.3 Scalability summary

For PASIS and BFT, scalability is limited by either the server network utilization or server cpu utilization.
Figure 5 shows that PASIS scales better than BFT in both. Consider write operations. Each BFT server
receives an entire replica of the data, whereas each PASIS storage-node receives a data-fragment % the size
of a replica. The work performed by BFT servers for each write request grows with b. In PASIS, the server
protocol cost decreases from 90 us for b = 1 to 57 ps for b = 4, whereas in BFT it increases from 0.80 ms
to 2.1 ms. The server cost in PASIS decreases because m increases as b increases, reducing the size of the
data-fragment that is validated. We believe that the server cost for BFT increases because the number of
messages that must be sent to all other servers increases.
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5.5 Concurrency

In PASIS, both read-write concurrency and client crashes during write operations can lead to client read
operations observing repairable writes. To measure the effect of concurrency on the system, we measure
multi-client throughput when accessing overlapping block sets. The experiment makes use of four clients,
each with four operations outstanding. Each client accesses a range of eight data blocks, with no outstanding
requests from the same client going to the same block.

At the highest concurrency level (all eight blocks in contention by all clients), we observed neither
significant drops in bandwidth nor significant increases in mean response time. Even at this high concurrency
level, the initial candidate was classified as complete 88.8% of the time, and that repair was necessary only
3.3% of the time. Since repair occurs so seldom, the effect on response time and throughput is minimal.

6 Discussion

BYZANTINE CLIENTS: In a storage system, Byzantine clients can write arbitrary values. The use of
fine-grained versioning (e.g., self-securing storage [49]) facilitates detection, recovery, and diagnosis from
storage intrusions [48]. Once discovered, arbitrarily modified data can be rolled back to its pre-corruption
state.

Byzantine clients can also attempt to exhaust the resources available to the PASIS protocol. Issuing
an inordinate number of write operations could exhaust storage space. However, continuous garbage col-
lection frees storage space prior to the latest complete write. If a Byzantine client were to intentionally
issue incomplete write operations, then garbage collection may not be able to free up space. In addition,
incomplete writes require read operations to roll-back behind them, thus consuming client computation and
network resources. In practice, storage-based intrusion detection [38] is probably sufficient to detect such
client actions.

TIMESTAMPS FROM BYZANTINE STORAGE-NODES: Byzantine storage-nodes can fabricate high times-
tamps that must be classified as incomplete by read operations. Worse, in each subsequent round of a read
operation, Byzantine storage-nodes can fabricate more high timestamps that are just a bit smaller than the
previous. In this manner, Byzantine storage-nodes can “attack” the performance of the read operation, but
not its safety. To protect against such denial-of-service attacks, the read operation can consider all unique
timestamps, up to a maximum of b + 1, present in a ResponseSet as candidates before soliciting another
ResponseSet. In this manner, each “round” of the read operation is guaranteed to consider at least one
candidate from a correct storage-node and no more than b candidates from Byzantine storage-nodes.
GARBAGE COLLECTION: The proof of liveness (i.e., of wait-freedom) given in Appendix | assumes
unbounded storage capacity. In practice, storage capacity is bounded; if storage capacity is exhausted, wait-
freedom cannot be guaranteed. Prior experience indicates that it takes weeks of normal activity to exhaust
the capacity of modern disk systems that version all write requests [49].

Garbage collection is used to avoid storage exhaustion. In doing so, it can interact with concurrent
read operations and concurrent write operations in such a manner that a read operation must be retried.
Specifically a read operation could classify a concurrent write operation as incomplete, the write operation
could then complete, and garbage collection could then delete all previous complete writes. If this occurs,
the read operation’s next round will observe an incomplete write with no previous history. Effectively,
the read operation has “missed” the complete write operation that it would have classified as such. When
it discovers this fact, the read operation retries (i.e., restarts by requesting a new ResponseSet). Thus, in
theory, a read operation faced with perpetual write concurrency and garbage collection may never complete.
In practice, such perpetual interaction of garbage collection and read-write concurrency for a given data-item
is not realistic.
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7 Conclusion

Building highly scalable, fault-tolerant storage systems is an active area of research. We have developed
an efficient Byzantine-tolerant protocol for reading and writing blocks of data. Experiments demonstrate
that PASIS, a prototype storage system that uses our protocol, scales well in the number of faults tolerated,
supports 60% greater write throughput than BFT, and requires significantly less server computation than
BFT.
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Appendix I: Proofs

Proof of safety

This section sketches a proof that our protocol implements linearizability [23] as adapted appropriately for
a fault model admitting operations by Byzantine clients. Intuitively, linearizability requires that each read
operation return a value consistent with some execution in which each read and write is performed at a
distinct point in time between when the client invokes the operation and when the operation returns. The
adaptations necessary to reasonably interpret linearizability in our context arise from the fact that Byzantine
clients need not follow the read and write protocols. The first adaptation is necessary because return values
of reads by Byzantine clients obviously need not comply with any correctness criteria. As such, we disregard
read operations by Byzantine clients in reasoning about linearizability, and define the duration of reads only
for those executed by benign clients only.

DEFINITION 1 A read operation executed by a benign client begins when the client invokes READ locally,
and completes when this invocation returns (timestamp, value).

The second needed adaptation of linearizability arises from the fact that it is not well defined when a
write operation by a Byzantine client begins. Therefore, we settle for merely a definition of when writes by
Byzantine operations complete.

DEFINITION 2 Storage-node S, accepts a write request with data-fragment D, cross checksum CC, and
timestamp ts upon successful return of the function VALIDATE(D, CC, ts, S) at the storage-node.

DEFINITION 3 A write operation with timestamp ts completes once Q¢ benign storage-nodes have accepted
write requests with timestamp ts.

In fact, Definition 3 applies to write operations by benign clients as well as “write operations” by
Byzantine clients. In this section, we use the label wis as a shorthand for the write operation with timestamp
ts. In contrast to Definition 3, Definition 4 applies only to write operations by benign clients.

DEFINITION 4 wis begins when a benign client invokes the WRITE operation locally that issues a write
request bearing timestamp ts.

LEMMA 1 Letcy and cz be benign clients. If ¢; performs a read operation that returns (ts1,v1), ¢ performs
a read operation that returns (tsp,v2), and ts; = ts, then vy = va.

Proof sketch: Since ts; = ts,, each read operation considers the same verifier. Since each read operation
considers the same verifier, each read operation considers the same cross checksum. A read operation does
not return a value unless the cross checksum is valid and there are more than b read responses with the
timestamp (since only candidates classified as repairable or complete are considered). Thus, only a set of
data-fragments resulting from the erasure-coding of the same data-item that are issued as write requests with
the same timestamp can validate a cross checksum. As such, v1 and v, must be the same. O

Let vis denote the value written by wis which, by Lemma 1, is well-defined. We use rs to denote a read
operation by a benign client that returns (ts, vis).

DEFINITION 5 Let 01 denote an operation that completes (a read by a benign client, or a write), and let 0,
denote an operation that begins (a read or write by a benign client). o1 precedes 0, if 0; completes before
02 begins. The precedence relation is written as 073 — 05.
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Operation 05 is said to follow, or to be subsequent to, operation 0;. The notation 01 /4 02 is used to
mean operation 0; does not precede operation 0..

LEMMA 2 If wyy is a write operation by a benign client and if wis — Wiy, then ts < ts'.

Proof sketch: A complete write operation executes at at least Q¢ benign storage-nodes (cf. Definition 3).
Since Wi — Wy, Wys IS complete.  Since the READ_TIMESTAMP function collects N —t TIME RESPONSE
messages and wys is complete, wiy observes at least b+ 1 TIME RESPONSE messages from correct storage-
nodes that executed ws (remember, b+t < Qc). As such, wiy will observe some timestamp greater than
or equal to ts and thus construct ts’ to be greater than ts. A Byzantine storage-node can return a logical
timestamp greater than that of the preceding write operation; however, this still advances logical time and
Lemma 2 holds. O

OBSERVATION 1 Timestamp order is a total order on write operations. The timestamps of write operations
by benign clients respect the precedence order among writes.

LEMMA 3 If some read operation by a benign client returns (ts, vis), and if wis — iy, then ts < ts'.

Proof sketch: By Definition 3, since wis completes, there are Q¢ benign storage-nodes that accept write-
requests with timestamp ts. Storage-node crashes and the asynchronous environment can “hide” up to t of
the Q¢ accepted write requests from ri. As such, at least Q¢ —t responses with timestamp ts are observable
by rw; a read operation that observes a candidate with at least Qc —t responses performs repair (line 10
of READ). Since rys returns (ts, vis), Vis can be returned from a read operation performed by a benign client.
Thus, ryy either repairs v, observes vis as complete, or observes some value with a timestamp higher than
ts. O

OBSERVATION 2 It follows from Lemma 3 that if rs — ryy, then ts < ts’. As such, there is a partial order <
on read operations by benign clients defined by the timestamps associated with the values returned (i.e., of
the write operations read). More formally, ri < ry < ts <ts'.

Ordering reads according to the timestamps of the write operations whose values they return yields
a partial order on read operations. Lemma 3 ensures that this partial order is consistent with precedence
among reads. Therefore, any way of extending this partial order to a total order yields an ordering of
reads that is consistent with precedence among reads. Lemmas 2 and 3 guarantee that this totally ordered
set of operations is consistent with precedence. This implies the natural extension of linearizability to
our fault model (i.e., ignoring reads and durations of writes by Byzantine clients); in particular, it implies
linearizability as originally defined [23] if all clients are benign.

Proof of liveness

Our protocol provides a strong liveness property, namely wait-freedom [21, 25]. Informally, each operation
by a correct client completes with certainty, even if all other clients fail, provided that at most b servers suffer
Byzantine failures and t servers fail in total. Note, we assume that storage-nodes have unbounded storage
capacity in this proof (i.e., that the entire version history back to the initial value L at time 0 is available at
each storage-node).

LEMMA 4 A write operation by a correct client completes.

Proof sketch: A write operation by a correct client waits for N —t responses from storage-nodes before
returning (cf. DO_WRITE). Since, Qc < N —t —b (cf. (1) in Section 4), write operations always terminate. O
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LEMMA 5 A read operation by a correct client completes.

Proof sketch: Given N —t READ _RESPONSE messages, a read operation classifies a candidate as com-
plete, repairable, or incomplete. The read completes if a candidate is classified as complete. As well, the
read completes if a candidate is repairable. Repair is initiated for repairable candidates—repair performs
a write operation, which by Lemma 4 completes—which lets the read operation complete. In the case of
an incomplete, the read operation traverses the version history backwards, until a complete or repairable
candidate is discovered. Traversal of the version history terminates if L at logical time O is encountered at
Qc storage-nodes. O
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